河北大学学报(自然科学版) ›› 2022, Vol. 42 ›› Issue (5): 552-560.DOI: 10.3969/j.issn.1000-1565.2022.05.014

• • 上一篇    

一种基于SSA-BRF的网络入侵检测方法

魏明军1,2,张鑫楠1,刘亚志1,2,周太宇1   

  • 收稿日期:2022-03-02 出版日期:2022-09-25 发布日期:2022-10-19
  • 通讯作者: 张鑫楠(1996—)
  • 作者简介:魏明军(1969—),男,河北唐山人,华北理工大学教授,主要从事计算机网络安全方向研究.
    E-mail:109849249@qq.com
  • 基金资助:
    唐山市科技创新团队培养计划项目(18130201b)

A network intrusion detection method based on SSA-BRF

WEI Mingjun1,2, ZHANG Xinnan1, LIU Yazhi1,2, ZHOU Taiyu1   

  1. 1.College of Artificial Intelligence, North China University of Science and Technology, Tangshan 063210, China; 2.Hebei Provincial Key Laboratory of Industrial Intelligent Perception, North China University of Science and Technology, Tangshan 063210, China
  • Received:2022-03-02 Online:2022-09-25 Published:2022-10-19

摘要: 针对随机森林(random forest,RF)超参数的选择会对RF的分类结果产生较大影响的问题,提出一种基于麻雀搜索算法(sparrow search algorithm,SSA)的RF超参数寻优方法,利用该方法帮助RF寻找一组优秀的超参数.并针对RF较难准确识别出少数类数据的问题,利用平衡随机森林(balanced random forest,BRF)来提高模型对少数类的召回率.综合SSA和BRF构建SSA-BRF模型,并在CIC-IDS-2017数据集对模型的分类效果进行验证.实验结果表明,SSA-BRF相较于RF在准确率、宏召回率和宏F1分数上分别提升了9.57%、26.62%和0.17,该模型在一定程度上可以提高网络入侵检测系统的性能.

关键词: 麻雀搜索算法, 超参数寻优, 平衡随机森林, 不平衡数据分类, CIC-IDS-2017

Abstract: In order to solve the problem that the selection of hyper-parameters of random forest(RF)will have a great impact on the classification results of RF, an optimization method of RF hyper-parameters based on sparrow search algorithm(SSA)is proposed to help RF find a set of excellent hyper-parameters. Balanced random forest(BRF)is used to solve the problem that RF is difficult to accurately identify minority data, so as to improve the recall rate of the model for minority data. Finally, SSA-BRF model is constructed by integrating SSA and BRF, and the classification effect of the model is verified in CIC-IDS-2017 data set. Experimental results show that compared with RF, the accuracy, macro recall and macro F1 score of SSA-BRF are improved by 9.57%, 26.62% and 0.17 respectively. This model can improve the performance of network intrusion detection system to a certain extent.

Key words: sparrow search algorithm, hyperparameter optimization, balanced random forest, imbalanced data classification, CIC-IDS-2017

中图分类号: