[1] NIYOGI S A, ADELSON E H. Analyzing gait with spatiotemporal surfaces[Z].IEEE Workshop on Motion of Non-rigid and Articulated Objects, Austin, TX, 1994. DOI:10.1109/mnrao.1994.346253. [2] HUANG X X, BOULGOURIS N V. Gait recognition with shifted energy image and structural feature extraction[J]. IEEE Transactions on Image Processing, 2012, 21(4): 2256-2268. DOI:10.1109/tip.2011.2180914. [3] CHOUDHURY S D, TJAHJADI T. Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors[J]. Pattern Recognition, 2012, 45(9): 3414-3426. DOI: 10.1016/j.patcog.2012.02.032. [4] BODER R, DRENNER A, FEHR D, et al. View-independent human motion classification using image-based reconstruction[J]. Image and Vision Computing, 2009, 27(8): 1194-1206. DOI: 10.1016/j.imavis.2008.11.008. [5] CASTRO F M, MARÌN-JIMÈNEZ M J, MATA N G, et al. Fisher motion descriptor for multiview gait recognition[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2017, 31(1): 1-40.DOI:10.1142/s021800141756002x. [6] ZHENG S, ZHANG J G, HUANG K Q, et al. Robust view transformation model for gait recognition[Z]. 18th IEEE International Conference on Image Processing, Brussels, Belgium, 2011. DOI:10.1109/icip.2011.6115889. [7] YU S Q, CHEN H F, WANG Q, et al. Invariant feature extraction for gait recognition using only one uniform model[J]. Neurocomputing, 2017, 239: 81-93. DOI: 10.1016/j.neucom.2017.02.006. [8] ZHANG L F, ZHANG L P, TAO D C, et al. A sparse and discriminative tensor to vector projection for human gait feature representation[J]. Signal Processing, 2015, 106:245-252. DOI: 10.1016/j.sigpro.2014.08.005. [9] ROY A, SURAL S, MUKHERJEE J. Gait recognition using pose kinematics and pose energy image[J]. Signal Processing, 2012, 92(3):780-792. DOI: 10.1016/j.sigpro.2011.09.022. [10] GUAN Y, LI C T, HU Y. Random subspace method for gait recognition[Z]. IEEE International Conference on Multimedia & Expo Workshops., Melbourne, Australia, 2012. DOI:10.1109/icmew.2012.55 2012:284-289. [11] XING X L, WANG K J, YAN T, et al. Complete canonical correlation analysis with application to multi-view gait recognition[J]. Pattern Recognition, 2016, 50: 107-117. DOI: 10.1016/j.patcog.2015.08.011. [12] WEI L, KUO J, PENG J L. Gait recognition via GEI subspace projections and collaborative representation classification[J]. Neurocomputing, 2018, 275:1932-1945. DOI: 10.1016/j.neucom.2017.10.049. [13] 郭欣,王蕾,宣伯凯,等.基于有监督Kohonen神经网络的步态识别[J].自动化学报,2017,43(3):430-438. DOI: 10.16383/j.aas.2017.c160114. [14] 王科俊,丁欣楠,邢向磊,等.多视角步态识别综述[J].自动化学报,2019,45(5):841-852. DOI: 10.16383/j.aas.2018.c170599. [15] MA G, K WANG Y, WU L G. Subspace ensemble learning via totally-corrective boosting for gait recognition[J]. Neurocomputing, 2017, 224:119-127. DOI: 10.1016/j.neucom.2016.10.047. [16] DENG M Q, WANG C, CHENG F J, et al. Fusion of spatial-temporal and kinematic features for gait recognition with deterministic learning[J]. Pattern Recognition, 2017, 67:186-200. DOI: 10.1016/j.patcog.2017.02.014. [17] DENG M Q, WANG C, CHEN Q F. Human gait recognition based on deterministic learning through multiple views fusion.[J]. Pattern Recognition Letters, 2016, 78(C):56-63. DOI: 10.1016/j.patrec.2016.04.004. [18] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554. DOI: 10.1162/neco.2006.18.7.1527. [19] ROUX N, BENGIO Y. Representational power of restricted boltzmann machines and deep belief networks[J]. Neural Computation, 2008, 20(6):1631-1649. DOI: 10.1162/neco.2008.04-07-510. [20] HINTON G E. Training products of experts by minimizing contrastive divergence[J]. Neural Computation, 2002, 14(8): 1771-1800. DOI:10.1162/089976602760128018. [21] 刘丽丽.基于最外轮廓的步态识别研究[D].济南:山东大学,2012. [22] WANG L, TAN T, NING H, et al. Silhouette analysis-based gait recognition for human identification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12):0-1518. DOI:10, 1109/tpami. 2003. 1251144. |