[1] GAO X, SONG J, JI P,et al. Polydopamine-templated hydroxyapatite reinforced polycaprolactone composite nanofibers with enhanced cytocompatibility and osteogenesis for bone tissue engineering[J]. ACS Applied Materials & Interfaces, 2016, 8(5):3499-3515.DOI: 10.1021/acsami.5b12413. [2] CAI Y R, TANG R K. Calcium phosphate, nanoparticles in biomineralization and biomaterials[J]. Journal of Materials Chemistry,2008,18(32): 3775-3787.DOI:10.1039/b805407j. [3] DO T N,LEE W H,LOO C Y,et al. Hydroxyapatite nanoparticles as vectors for gene delivery[J]. Therapeutic Delivery, 2012, 3(5):623-632.DOI: 10.4155/tde.12.39. [4] 周雅轩. 纳米载药系统在医药领域中的应用进展[J]. 天津药学,2012,24(1):47-49.DOI: 10.3969/j.issn.1006-5687.2012.01.022. [5] DOROZHKIN S V. Nanodimensional and nanocrystalline calcium orthophosphates[J]. American Journal of Biomedical Engineering,2018,2(3):48-97. DOI: 10.1007/978-981-10-5975-9_9. [6] SERVICE R F. American chemical society meeting: Nanomaterials show signs of toxicity[J]. Science,2003,300(5617):243a-243.DOI:10.1126/science.300.5617.243a. [7] VUKOSAVLJEVIC D,HUTTER J L,HELMERHORST E J, et al. Nanoscale adhesion forces between enamel pellicle proteins and hydroxyapatite[J]. Journal of Dental Research, 2014,93(5):514-519.DOI: 10.1177/0022034514526599 [8] KILPADI K L,CHANG P L,BELLIS S L. Hydroxylapatite binds more serum proteins, purified integrins, and osteoblast precursor cells than titanium or steel[J]. Journal of Biomedical Materials Research, 2001,57(2):258-267.DOI: 10.1002/1097-4636(200111)57:2<258::aid-jbm1166>3.0.co;2-r [9] 温波,陈治清,蒋引珊,等. 纳米羟基磷灰石对成骨细胞功能代谢影响的研究[J]. 生物医学工程学杂志, 2005, 22(3):463-467.DOI:10.3321/j.issn:1001-5515.2005.03.008 [10] BOANINI E,TORRICELLI P,GAZZANO M, et al. Nanocomposites of hydroxyapatite with aspartic acid and glutamic acid and their interaction with osteoblast-like cells[J]. Biomaterials,2006,27(25):4428-4433.DOI:10.1016/j.biomaterials.2006.04.019 [11] LIU Y K,WANG G C,CAI Y R, et al. In vitro effects of nanophase hydroxyapatite particles on proliferation and osteogenic differentiation of bone marrow-derived mesenchymal stem cells[J]. Journal of Biomedical Materials Research Part A, 2009, 90(4):1083-1091.DOI:10.1002/jbm.a.32192 [12] HA S W, JANG H L,NAM K T,et al.Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression [J]. Biomaterials, 2015, 65:32-42.DOI:10.1016/j.biomaterials.2015.06.039. [13] WANG C,LIU D D,ZHANG C M, et al. Defect-related luminescent hydroxyapatite-enhanced osteogenic differentiation of bone mesenchymal stem cells via an ATP-Induced cAMP/PKA Pathway [J]. ACS Applied Materials & Interfaces, 2016, 8(18):11262-11271.DOI:10.1021/acsami.6b01103. [14] XIA L G, LIN K L, JIANG X Q, et al. Effect of nano-structured bioceramic surface on osteogenic differentiation of adipose derived stem cells[J]. Biomaterials, 2014, 35(30):8514-8527.DOI:10.1016/j.biomaterials.2014.06.028 [15] 杨再清, 雷云坤, 孟增东. 纳米羟基磷灰石在骨科中的临床应用及作用机制[J]. 中国组织工程研究, 2012,16(51):9629-9634.DOI:10.3969/j.issn.2095-4344.2012.51.024. [16] 温波, 陈治清, 蒋引珊,等. 纳米羟基磷灰石对破骨细胞功能代谢影响的研究[J]. 现代口腔医学杂志, 2005, 19(5):501-504.DOI: 10.3969/j.issn.1003-7632.2005.05.019. [17] DELíA N L,MATHIEU C,HOEMANN C D, et al. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures[J]. Nanoscale, 2015, 7(44):18751-18762.DOI:10.1039/c5nr04850h. [18] 冯庆玲, 崔福斋, 张伟. 纳米羟基磷灰石/胶原骨修复材料[J]. 中国医学科学院学报, 2002(2):124-128. [19] 董青山,李祖兵,王虎中,等. 纳米羟基磷灰石修复鼠下颌骨缺损[J]. 第四军医大学学报, 2005(13):1180-1184. [20] 宋华,任向前,未东兴.纳米羟基磷灰石对缺损骨再生的影响[J]. 中国组织工程研究, 2015, 19(8):1155-1159.DOI:10.3969/j.issn.2095-4344 [21] SUN J S,LIU H C,CHANG W H,et al. Influence of hydroxyapatite particle size on bone cell activities: an in vitro study[J]. Journal of Biomedical Materials Research Part A B, 1998, 39(3):390-397.DOI:10.1002/(sici)1097-4636(19980305)39:3<390::AID-JBM7>3.0.co;2-E. [22] LIU X, SUN J. Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-κB pathways[J]. Biomaterials, 2010, 31(32):8198-8209.DOI:10.1016/j.biomate rials.2010.07.069 [23] HUANG J, BEST S M, BONFIELD W, et al. In vitro assessment of the biological response to nano-sized hydroxyapatite [J]. Journal of Materials Science Materials in Medicine, 2004, 15(4):441-445.DOI: 10.1023/b:jmsm.0000021117.67205.cf. [24] SHI Z L,HUANG X,CAI Y R,et al. Size effect of hydroxyapatite nanoparticles on proliferation and apoptosis of osteoblast-like cells[J]. Acta Biomaterialia, 2009, 5(1):338-345.DOI: 10.1016/j.actbio.2008.07.023. [25] DING T T, SUN J. Effect of nanometer hydroxyapatite particles on rat macrophage at mRNA level[J]. Key Engineering Materials, 2007, 330:287-290.DOI: 10.4028/www.scientific.net/kem.330-332.287. [26] XU Z L,SUN J,LIU C S,et al. Effect of hydroxyapatite nanoparticles of different concentrations on rat osteoblast[J]. Materials Science Forum, 2009, 610(s 3-4):1364-1369.DOI: 10.4028/www.scientific.net/msf.610-613.1364. [27] XU Z L,LIU C S,WEI J,et al.Effects of four types of hydroxyapatite nanoparticles with different nanocrystal morphologies and sizes on apoptosis in rat osteoblasts[J]. Journal of Applied Toxicology, 2012, 32(6):429-435.DOI: 10.1002/jat.1745. [28] WANG R X,HU H, GUO J X,et al. Nano-hydroxyapatite modulates osteoblast differentiation through autophagy induction via mTOR signaling pathway [J]. Journal of Biomedical Nanotechnology, 2019,15(2):405-415. DOI:10.1166/jbn.2019.2677. [29] BROWN D M,WILSON M R, MACNEE W, et al. Size-dependent proinflammatory effects of ultrafine polystyrene particles: A role for surface area and oxidative stress in the enhanced activity of ultrafines[J]. Toxicology and Applied Pharmacology, 2001, 175(3):191-199.DOI: 10.1006/taap.2001.9240. [30] AAM B B, FONNUM F. Carbon black particles increase reactive oxygen species formation in rat alveolar macrophages in vitro[J]. Archives of Toxicology, 2007, 81(6):441-446. DOI:10.1007/s00204-006-0164-3. [31] SANDRA RÍOSARRABAL, FRANCISCO ARTACHOCORDÓN, JOSEFA LEÓN, et al. Involvement of free radicals in breast cancer[J]. Springerplus, 2013, 2(1):1-12.DOI:10.1186/2193-1801-2-404. [32] VERA-RAMIREZ L, SANCHEZ-ROVIRA P, RAMIREZ-TORTOSA M C, et al. Free radicals in breast carcinogenesis, breast cancer progression and cancer stem cells. Biological bases to develop oxidative-based therapies[J]. Critical Reviews in Oncology/hematology, 2011, 80(3):347-368.DOI:10.1016/j.critrevonc.2011.01.004. [33] TURKEZ H, YOUSEF M I, SONMEZ E, et al. Evaluation of cytotoxic, oxidative stress and genotoxic responses of hydroxyapatite nanoparticles on human blood cells[J]. Journal of Applied Toxicology, 2014, 34(4):373-379.DOI: 10.1002/jat.2958. [34] CHEN X,DENG C,TANG S, et al. Mitochondria-dependent apoptosis induced by nanoscale hydroxyapatite in human gastric cancer SGC-7901 cells [J]. Biological & Pharmaceutical Bulletin, 2007, 30(1):128-132.DOI: 10.1248/bpb.30.128 [35] LONERGAN T, BRENNER C, BAVISTER B. Differentiation-related changes in mitochondrial properties as indicators of stem cell competence[J]. Journal of Cellular Physiology, 2006, 208(1):149-153.DOI: 10.1002/jcp.20641 [36] ZHANG Y M,GLENN M,TOTH P T,et al. Mitochondrial respiration regulates adipogenic differentiation of human mesenchymal stem cells[J]. PLoS ONE, 2013, 8(10):e77077-.DOI: 10.1371/journal.pone.0077077. [37] ETO H,KATO H,SUGA H,et al. The fate of adipocytes after nonvascularized fat Grafting[J].Plastic and Reconstructive Surgery,2012,129(5):1081-1092.DOI: 10.1097/prs.0b013e31824a2b19. [38] QIAO F, BOWIE J U. The many faces of sAM[J]. Science Signaling,2005(286):7.DOI:10.1126/stke.2862005re7. [39] ALMEIDA M,HAN L,MARTIN-MILLAN M,et al. Skeletal involution by age-associated oxidative stress and Its acceleration by loss of sex steroids [J]. Journal of Biological Chemistry, 2007, 282(37):27285-27297.DOI: 10.1074/jbc.m702810200. [40] GRATTON S E A,ROPP P A, POHLHAUS P D,et al. The effect of particle design on cellular internalization pathways[J]. Proceedings of the National Academy of Sciences,2008,105(33):11613-11618.DOI: 10.1073/pnas.0801763105. [41] JIN Y,CHEN S,LI N,et al. Defect-related luminescent bur-like hydroxyapatite microspheres induced apoptosis of MC3T3-E1 cells by lysosomal and mitochondrial pathways[J]. Science China Life Sciences, 2018,61(4):464-475.DOI: 10.1007/s11427-017-9258-3. [42] JIN Y,LIU X L,LIU H F,et al. Oxidative stress-induced apoptosis of osteoblastic MC3T3-E1 cells by hydroxyapatite nanoparticles through lysosomal and mitochondrial pathways[J]. RSC Advances, 2017, 7(21):13010-13018. DOI: 10.1039/c7ra01008g. [43] GÜNTER OBERDÖRSTER, SHARP Z, ATUDOREI V, et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats[J] Toxicol Environ Health A,2002,65(20):1531-1543. DOI:10.1080/00984100290071658. |