[1] MEISRER A. Glutathione metabolism and its selective modification[J]. The Journal of Biological Chemistry, 1988, 33: 17205-17208. [2] 朱东建,江华. 基于花菁的硫醇近红外比率荧光探针[J].影视科学与光化学,2014,32:106-112. [3] SHAHROKHIAN S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode[J]. Analytical Chemistry, 2001, 73: 5972-5978.DOI:10.1021/ac010541m. [4] VAN M J B, DHONUKSHE-RUTTEN R A M. Homocysteine levels and the risk of osteoporotic fracture[J]. New England Journal of Medicine, 2004, 350: 2033-2041. DOI:10.1056/NEJMoa032546. [5] STEEGERS-THEUNISSEN R P, BOERS G H, TRIJBELS F J. Neural-tube defects and derangement of homocysteine metabolism[J]. New England Journal of Medicine, 1991, 3: 199-200..DOI:10.1056/NEJM199101173240315. [6] SESHADRIS S, BEISER A, SELHUB J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimers disease[J]. New England Journal of Medicine, 2002, 346: 476-483. DOI:10.1056/NEJMoa011613. [7] 岳永康, 霍方俊, 阴彩霞. 硫醇亲核反应及其荧光识别研究[J].中国科学: 化学, 2017,47: 249-257. [8] YANG Y, HUO F, YIN F, et al. Thiol-chromene click chemistry: A coumarin-based derivative and its use as regenerable thiol probe and in bioimaging applications[J]. Biosensors and Bioelectronics, 2013, 47: 300-306. DOI:10.1016/j.bios.2013.03.007. [9] KAUR B, SRIVASTAVA R, SATPATIB B. A novel gold nanoparticle decorated nanocrystalline zeolite based electrochemical sensor for the nanomolar simultaneous detection of cysteine and glutathione[J]. RSC Advances, 2015, 5: 95028-95037. DOI:10.1039/C5RA19249H. [10] CHEN X Q, KO S K, KIM M J, et al. A thiol-specific fluorescent probe and its application for bioimaging[J]. Chemical Communications, 2010, 46: 2751. DOI:10.1039/C5RA19249H. [11] HAN C M, YANG H R, CHEN M, et al. Mitochondria-targeted near-Infrared fluorescent off-on probe for selective detection of cysteine in living cells and in vivo[J]. ACS Applied Materials & Interfaces, 2015, 7: 27968-27975. DOI:10.1021/acsami.5b10607. [12] YANG Y T, HUO F J, YIN C X, et al. An ‘OFF-ON’ fluorescent probe for specially recognize on Cys and its application in bioimaging[J]. Dyes and Pigments, 2015, 114: 105-109.DOI:10.1021/acsami.5b10607. [13] WU X L, SHU H, ZHOU B J, et al, Design and synthesis of a new rhodamine B-based fluorescent probefor selective detection of glutathione and its application for live cell imaging[J]. Sensors and Actuators B, 2016, 237: 431-442. DOI:10.1016/j.snb.2016.06.161. [14] LIU K Y, SHANG H M, KONG X Q, et al. A novel near-infrared fluorescent probe with a large Stokes shift for biothiol detection and application in in vitro and in vivo fluorescence imaging[J]. Journal of Materials Chemistry B, 2017, 5: 3836-3841. DOI:10.1039/C7TB00187H. [15] LEE M, KIM J, HAN J, et al. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug[J]. Journal of the American Chemical Society, 2012, 134: 12668-12674. DOI:10.1021/ja303998y. [16] DING S S, FENG G Q. Smart probe for rapid and simultaneous detection and discrimination of hydrogen sulfide, cysteine/homocysteine, and glutathione[J]. Sensors and Actuators B, 2016, 235: 691-697. [17] ZHANG M Z, HAN H H, ZHANG S Z, et al. new colorimetric and fluorescent probe with a large stokes shift for rapid and specific detection of biothiols and its application in living cells[J]. Journal of Materials Chemistry B, 2017, 5: 8780-8785. |