河北大学学报(自然科学版) ›› 2021, Vol. 41 ›› Issue (5): 535-544.DOI: 10.3969/j.issn.1000-1565.2021.05.010
段新瑞,孟天姣
收稿日期:
2021-05-10
出版日期:
2021-09-25
发布日期:
2021-09-28
作者简介:
段新瑞(1981—),男,河北邯郸人,陕西师范大学教授、博士生导师,主要从事癌干细胞成像、分离与相关核酸标志物检测方法学研究.E-mail:duanxr@snnu.edu.cn
基金资助:
DUAN Xinrui, MENG Tianjiao
Received:
2021-05-10
Online:
2021-09-25
Published:
2021-09-28
摘要: 高时空分辨率和高灵敏度的荧光成像技术是一种新兴的活体可视化检测工具,广泛应用于分子生物学、细胞免疫学、微生物学以及肿瘤学等领域.由于有机荧光探针具有安全性高、生物相容性好、光学稳定性强等优点,目前已开发了一系列生物相容性好、具有易于修饰、调节光谱且易于被生物体代谢的有机小分子荧光探针,包括可见光区有机小分子染料以及近红外有机染料等.本文综述了近些年新型有机小分子荧光探针在2种肿瘤标志物检测中的研究进展.
中图分类号:
段新瑞,孟天姣. 有机小分子荧光探针的设计及其在酶类肿瘤标志物检测中的研究进展[J]. 河北大学学报(自然科学版), 2021, 41(5): 535-544.
DUAN Xinrui, MENG Tianjiao. Research progress in design of the organic fluorescence probes and its application for the detection of tumor biomarker[J]. Journal of Hebei University(Natural Science Edition), 2021, 41(5): 535-544.
[1] SUNG H, FERLAY J, SIEGEL RL,et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin,2021, 71(3): 209-249. DOI: 10.3322/caac.21660. [2] LAM C G, HOWARD S C, BOUFFET E,et al.Science and health for all children with cancer[J]. Science, 2019,363:1182-1186. DOI:10.1126/science.aaw4892. [3] LIU H W, LI K, HU X X, et al. In situ localization of enzyme activity in live cells by a molecular probe releasing a precipitating fluorochrome[J]. Angew Chem, 2017, 129: 11950-11954.DOI: 10.1002/ange.201705747. [4] CHEN K, SHI B F. ChemInform abstract: sulfonamide-promoted palladium(Ⅱ)-catalyzed alkylation of unactivated methylene C(sp3)-H bonds with alkyl iodides[J]. ChemInform, 2015, 46(15): 12144-12148.DOI: 10.1002/chin.201515052. [5] SHI H, NA Z, DAN D, et al. Fluorescent light-up probe with aggregation-induced emission characteristics for in vivo imaging of cell apoptosis[J].Org Biomol Chem, 2013, 11, 7289-7296.DOI: 10.1039/c3ob41572d. [6] SROOR H,HUANG Y W,SEPHTON B, et al. High-purity orbital angular momentum states from a visible metasurface laser[J]. Nat Photonics, 2020,14(8): 1-6.DOI:10.1038/s41566-020-0623-z. [7] CAO D, LIU Z, VERWILST P, et al. Correction to coumarin-based small-molecule fluorescent chemosensors[J].Chem Rev, 2019, 119: 10403-10519.DOI: 10.1021/acs.chemrev.9b00640. [8] ZHANG R, YONG J,YUAN J, et al. Recent advances in the development of responsive probes for selective detection of cysteine[J]. Coord Chem Rev,2020, 408: 213182.DOI: 10.1016/j.ccr.2020.213182. [9] WU L, SEDGWICK A C, SUN X, et al. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species[J]. Acc Chem Res,2019, 52:2582-2597.DOI: 10.1021/acs.accounts.9b00302. [10] YUE Y, HUO F, YIN C.The chronological evolution of small organic molecular fluorescent probes for thiols[J]. Chem Sci, 2021, 12:1220-1226.DOI: 10.1039/D0SC04960C. [11] XIAO H, LI P, TANG B.Small molecular fluorescent probes for imaging of viscosity in living biosystems[J].Chem Eur J, 2021, 27: 6880-6898.DOI: 10.1002/chem.202004888. [12] CHEN S Y, LI Z, LI K, et al.Small molecular fluorescent probes for the detection of lead, cadmium and mercury ions[J].Coord Chem Rev, 2021, 429:213691.DOI: 10.1016/j.ccr.2020.213691. [13] ZHANG Y,LI S, ZHANG H, et al.Design and application of receptor-targeted fluorescent probes based on small molecular fluorescent dyes[J].Bioconjug Chem, 2021, 32:4-24.DOI: 10.1021/acs.bioconjchem.0c00606. [14] PAN S J, PEI L J, ZHANG A, et al. Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor[J]. Biomaterials, 2020, 230: 119606. DOI:10.1016/j.biomaterials.2019.119606. [15] BRAY F FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018,68: 394-424. DOI:10.3322/caac.21492. [16] SADIGHBAYAN D, SADIGHBAYAN K, TOHID-KIA M R, et al. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis:Recent progress[J].Trac Trends Anal Chem,2019,118:73-88.DOI:10.1016/j.trac.2019.05.014. [17] QIU F, GAN X Y, JIANG B Y, et at. Electrode immobilization-free and sensitive electrochemical sensing of thrombin via magnetic nanoparticle-decorated DNA polymers[J].Sens Actuat B Chem,2021,331:129395.DOI:10.1016/j.snb.2020.129395. [18] MENG T, JIA H, AN S, et al. Pd nanoparticles-DNA layered nanoreticulation biosensor based on target-catalytic hairpin assembly for ultrasensitive and selective biosensing of microRNA-21[J]. Sensor Actuator B Chem, 2020,232:128621. [19] WANG L, MENG T J, ZHAO D, et al. An enzyme-free electrochemical biosensor based on well monodisperse Au nanorods for ultra-sensitive detection of telomerase activity[J]. Biosens Bioelectron, 2020, 148: 111834. DOI:10.1016/j.bios.2019.111834. [20] LI F L, CHEN Y P, LIN R X, et al. Integration of fluorescent polydopamine nanoparticles on protamine for simple and sensitive trypsin assay[J]. Anal Chimica Acta, 2021, 1148: 338201. DOI:10.1016/j.aca.2021.338201. [21] MENG X D, ZHANG K, YANG F, et al. Biodegradable metal-organic frameworks power DNAzyme for in vivo temporal-spatial control fluorescence imaging of aberrant MicroRNA and hypoxic tumor[J]. Anal Chem, 2020, 92(12): 8333-8339. DOI:10.1021/acs.analchem.0c00782. [22] ZHANG X, AN L, TIAN Q, et al. Tumor microenvironment-activated NIR-Ⅱ reagents for tumor imaging and therapy[J]. J Mater Chem B, 2020, 8(22): 4738-4747. DOI:10.1039/d0tb00030b. [23] TIAN X G, TIAN Z H, WANG Y, et al. A highly selective fluorescent probe for detecting glutathione transferases to reveal anticancer-activity sensitivity of cisplatin in cancer cells and tumor tissues[J]. Sens Actuat B: Chem, 2018, 277: 423-430. DOI:10.1016/j.snb.2018.09.045. [24] LIU Y Q, XIONG E H, LI X Y, et al. Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification[J]. Biosens Bioelectron, 2017, 87: 970-975. DOI:10.1016/j.bios.2016.09.069. [25] WANG S, HUANG M, HUA J, et al. Digital counting of single semiconducting polymer nanoparticles for the detection of alkaline phosphatase[J]. Nanoscale, 2021, 13(9): 4946-4955. DOI:10.1039/d0nr09232k. [26] MWILU S K, OKELLO V A, OSONGA F J, et al. A new substrate for alkaline phosphatase based on quercetin pentaphosphate[J]. Analyst, 2014, 139(21): 5472-5481. DOI:10.1039/c4an00931b. [27] QIN W J, XU C C, ZHAO Y F, et al. Recent progress in small molecule fluorescent probes for nitroreductase[J]. Chin Chem Lett, 2018, 29(10): 1451-1455. DOI:10.1016/j.cclet.2018.04.007. [28] JIE Z, QI G H, XU C, et al. Enzymatic preparation of plasmonic-fluorescent quantum dot-gold hybrid nanoprobes for sensitive detection of glucose and alkaline phosphatase and dual-modality cell imaging[J]. Anal Chem, 2019, 91(21): 14074-14079. DOI:10.1021/acs.analchem.9b03818. [29] WANG L, MENG T J, YU G S, et al. A label-free electrochemical biosensor for ultra-sensitively detecting telomerase activity based on the enhanced catalytic currents of acetaminophen catalyzed by Au nanorods[J]. Biosens Bioelectron, 2019, 124/125: 53-58. DOI:10.1016/j.bios.2018.09.098. [30] GAN X Y, QIU F, JIANG B Y, et al. Convenient and highly sensitive electrochemical biosensor for monitoring acid phosphatase activity[J]. Sens Actuat B: Chem, 2021, 332: 129483. DOI:10.1016/j.snb.2021.129483. [31] LI Y Y, XUE C H, FANG Z J, et al. In vivo visualization of γ-glutamyl transpeptidase activity with an activatable self-immobilizing near-infrared probe[J]. Anal Chem, 2020, 92(22): 15017-15024. DOI:10.1021/acs.analchem.0c02954. [32] LIU S F, WEI W J, SUN X Y, et al. Ultrasensitive electrochemical DNAzyme sensor for lead ion based on cleavage-induced template-independent polymerization and alkaline phosphatase amplification[J]. Biosens Bioelectron, 2016, 83: 33-38. DOI:10.1016/j.bios.2016.04.026. [33] XU A G, CHAO L, XIAO H B, et al. Ultrasensitive electrochemical sensing of Hg2+ based on thymine-Hg2+-thymine interaction and signal amplification of alkaline phosphatase catalyzed silver deposition[J]. Biosens Bioelectron, 2018, 104: 95-101. DOI:10.1016/j.bios.2018.01.005. [34] SAPPIA L, FELICE B, SANCHEZ M A, et al. Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in vitro applications[J]. Sens Actuat B: Chem, 2019, 281: 221-228. DOI:10.1016/j.snb.2018.10.105. [35] YU L, FENG L X, XIONG L, et al. Rational design of dual-emission lanthanide metal-organic framework for visual alkaline phosphatase activity assay[J]. ACS Appl Mater Interfaces, 2021, 13(10): 11646-11656. DOI:10.1021/acsami.1c00134. [36] WANG K, WANG W, ZHANG X Y, et al. Fluorescent probes for the detection of alkaline phosphatase in biological systems: Recent advances and future prospects[J]. Trac Trends Anal Chem, 2021, 136: 116189. DOI:10.1016/j.trac.2021.116189. [37] DILLON K M, MORRISON H A, POWELL C R, et al. Targeted delivery of persulfides to the gut: effects on the microbiome[J]. Angew Chem Int Ed, 2021, 60(11): 6061-6067. DOI:10.1002/anie.202014052. [38] KARAN S N, CHO M Y, LEE H, et al. Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection[J]. J Med Chem, 2021, 64(6): 2971-2981. DOI:10.1021/acs.jmedchem.0c02162. [39] SARKAR S, LEE H, RYU H G, et al. A study on hypoxia susceptibility of organ tissues by fluorescence imaging with a ratiometric nitroreductase probe[J]. ACS Sens, 2021, 6(1): 148-155. DOI:10.1021/acssensors.0c01989. [40] LIN Y, SUN L H, ZENG F, et al. An unsymmetrical squaraine-based activatable probe for imaging lymphatic metastasis by responding to tumor hypoxia with MSOT and aggregation-enhanced fluorescent imaging[J]. Chem A Eur J, 2019, 25(72): 16740-16747. DOI:10.1002/chem.201904675. [41] VINEGONI C, FERUGLIO P F, GRYCZYNSKI I, et al. Fluorescence anisotropy imaging in drug discovery[J]. Adv Drug Deliv Rev, 2019, 151/152: 262-288. DOI:10.1016/j.addr.2018.01.019. [42] CAO X J, SUN Y, LU P, et al. Fluorescence imaging of intracellular nucleases-A review[J]. Anal Chimica Acta, 2020, 1137: 225-237. DOI:10.1016/j.aca.2020.08.013. [43] LI J, ZHANG Y, WANG P Z, et al. Reactive oxygen species, thiols and enzymes activable AIEgens from single fluorescence imaging to multifunctional theranostics[J]. Coord Chem Rev, 2021, 427: 213559. DOI:10.1016/j.ccr.2020.213559. [44] LIU C L, GAO X N, YUAN J L, et al. Advances in the development of fluorescence probes for cell plasma membrane imaging[J]. Trac Trends Anal Chem, 2020, 133: 116092. DOI:10.1016/j.trac.2020.116092. [45] ZHAO J H, CHEN J W, MA S N, et al. Recent developments in multimodality fluorescence imaging probes[J]. Acta Pharm Sin B, 2018, 8(3): 320-338. DOI:10.1016/j.apsb.2018.03.010. [46] ZHU H, HAMACHI I. Fluorescence imaging of drug target proteins using chemical probes[J]. J Pharm Anal, 2020, 10(5): 426-433. DOI:10.1016/j.jpha.2020.05.013. [47] KURBEGOVIC S, JUHL K, CHEN H, et al. Molecular targeted NIR-II probe for image-guided brain tumor surgery[J]. Bioconjugate Chem, 2018, 29(11): 3833-3840. DOI:10.1021/acs.bioconjchem.8b00669. [48] AN H W, HOU D, ZHENG R, et al. A near-infrared peptide probe with tumor-specific excretion-retarded effect for image-guided surgery of renal cell carcinoma[J]. ACS Nano, 2020, 14(1): 927-936. DOI:10.1021/acsnano.9b08209. [49] LI H D, YAO Q C, SUN W, et al. Aminopeptidase N activatable fluorescent probe for tracking metastatic cancer and image-guided surgery via in situ spraying[J]. J Am Chem Soc, 2020, 142(13): 6381-6389. DOI:10.1021/jacs.0c01365. [50] NG H L, LIN M Z. Structure-guided wavelength tuning in far-red fluorescent proteins[J]. Curr Opin Struct Biol, 2016, 39: 124-133. DOI:10.1016/j.sbi.2016.07.010. [51] XU S N, HU H Y. Fluorogen-activating proteins: beyond classical fluorescent proteins[J]. Acta Pharm Sin B, 2018, 8(3): 339-348. DOI:10.1016/j.apsb.2018.02.001. [52] GUO J, GUO M Y, WANG F H, et al. Graphdiyne: structure of fluorescent quantum dots[J]. Angewandte Chemie Int Ed, 2020, 59(38): 16712-16716. DOI:10.1002/anie.202006891. [53] WANG L, LI W T, YIN L Q, et al. Full-color fluorescent carbon quantum dots[J]. Sci Adv, 2020, 6(40): eabb6772. DOI:10.1126/sciadv.abb6772. [54] LI X C, ZHAO Y P, YIN J L, et al. Organic fluorescent probes for detecting mitochondrial membrane potential[J]. Coord Chem Rev, 2020, 420: 213419. DOI:10.1016/j.ccr.2020.213419. [55] TIAN X, MURFIN L C, WU L L, et al. Fluorescent small organic probes for biosensing[J]. Chem Sci, 2021, 12(10): 3406-3426. DOI:10.1039/d0sc06928k. [56] LI X C, LIANG X, YIN J L, et al. Organic fluorescent probes for monitoring autophagy in living cells[J]. Chem Soc Rev, 2021, 50(1): 102-119. DOI:10.1039/d0cs00896f. [57] WU X F, SHI W, LI X H, et al. Recognition moieties of small molecular fluorescent probes for bioimaging of enzymes[J]. Acc Chem Res, 2019, 52(7): 1892-1904. DOI:10.1021/acs.accounts.9b00214. [58] HU D, ZOU L, LI B, et al. Photothermal killing of methicillin-resistant Staphylococcus aureus by bacteria-targeted polydopamine nanoparticles with nano-localized hyperpyrexia[J]. ACS Biomater Sci Eng, 2019, 5(10): 5169-5179. DOI:10.1021/acsbiomaterials.9b01173. [59] WANG Z, CARNIATO F, XIE Y J, et al. High relaxivity gadolinium-polydopamine nanoparticles[J]. Small, 2017, 13(43): 1701830. DOI:10.1002/smll.201701830. [60] JIAN C E, YAN J X, ZHANG H, et al. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo[J]. Mol Cell Probes, 2021, 55: 101686. DOI:10.1016/j.mcp.2020.101686. [61] ZHU B B, TANG W, REN Y Q, et al. Chemiluminescence of conjugated-polymer nanoparticles by direct oxidation with hypochlorite[J]. Anal Chem, 2018, 90(22): 13714-13722. DOI:10.1021/acs.analchem.8b04109. [62] FAN M Y, ZHOU Y Y, GUO Y J, et al. Bright red fluorescent conjugated polymer nanoparticles with dibenzopyran as electron donor for cell imaging[J]. Anal Methods, 2017, 9(21): 3255-3259. DOI:10.1039/c7ay00585g. [63] JI Y Y, JONES C, BAEK Y, et al. Near-infrared fluorescence imaging in immunotherapy[J]. Adv Drug Deliv Rev, 2020, 167: 121-134. DOI:10.1016/j.addr.2020.06.012. [64] HUANG Y F, ZHANG Y B, HUO F J, et al. Design strategy and bioimaging of small organic molecule multicolor fluorescent probes[J]. Sci China Chem, 2020, 63(12): 1742-1755. DOI:10.1007/s11426-020-9855-3. [65] LIU Y T, LUO X F, LEE Y Y, et al. Investigating the metal-enhanced fluorescence on fluorescein by silica core-shell gold nanoparticles using time-resolved fluorescence spectroscopy[J]. Dyes Pigments, 2021, 190: 109263. DOI:10.1016/j.dyepig.2021.109263. [66] IWAKI H, KAMIYA M, KAWATANI M, et al. Fluorescence probes for imaging basic carboxypeptidase activity in living cells with high intracellular retention[J]. Anal Chem, 2021, 93(7): 3470-3476. DOI:10.1021/acs.analchem.0c04793. [67] HU S Q, JIANG H P, ZHU J Q, et al. Tumor-specific fluorescence activation of rhodamine isothiocyanate derivatives[J]. J Control Release, 2021, 330: 842-850. DOI:10.1016/j.jconrel.2020.10.057. [68] LIU C, JIAO X J, WANG Q, et al. A unique rectilinearly π-extended rhodamine dye with large Stokes shift and near-infrared fluorescence for bioimaging[J]. Chem Commun, 2017, 53(77): 10727-10730. DOI:10.1039/c7cc06220f. [69] TIAN X, KUMAWAT L K, BULL S D, et al. Coumarin-based fluorescent probe for the detection of glutathione and nitroreductase[J]. Tetrahedron, 2021, 82: 131890. DOI:10.1016/j.tet.2020.131890. [70] YOON S A, CHUN J, KANG C, et al. Self-calibrating bipartite fluorescent sensor for nitroreductase activity and its application to cancer and hypoxic cells[J]. ACS Appl Bio Mater, 2021, 4(3): 2052-2057. DOI:10.1021/acsabm.0c01085. [71] YU X Y, WANG K N, XING M M, et al. Structurally regular arrangement induced fluorescence enhancement and specific recognition for glutathione of a pyrene chalcone derivative[J]. Anal Chimica Acta, 2019, 1082: 146-151. DOI:10.1016/j.aca.2019.07.052. [72] XING M M, WANG K N, WU X W, et al. A coumarin chalcone ratiometric fluorescent probe for hydrazine based on deprotection, addition and subsequent cyclization mechanism[J]. Chem Commun Camb Engl, 2019, 55(99): 14980-14983. DOI:10.1039/c9cc08174g. [73] ZHU K N, QIN T Y, ZHAO C, et al. A novel fluorescent turn-on probe for highly selective detection of nitroreductase in tumor cells[J]. Sens Actuat B: Chem, 2018, 276: 397-403. DOI:10.1016/j.snb.2018.08.134. [74] XU F Y, FAN M Y, KANG S S, et al. A genetically encoded fluorescent biosensor for detecting nitroreductase activity in living cancer cells[J]. Anal Chimica Acta, 2019, 1088: 131-136. DOI:10.1016/j.aca.2019.08.058. [75] YOON S A, CHUN J, KANG C, et al. Self-calibrating bipartite fluorescent sensor for nitroreductase activity and its application to cancer and hypoxic cells[J]. ACS Appl Bio Mater, 2021, 4(3): 2052-2057. DOI:10.1021/acsabm.0c01085. [76] WÜRTHNER F. Aggregation-induced emission(AIE): a historical perspective[J]. Angew Chem Int Ed, 2020, 59(34): 14192-14196. DOI:10.1002/anie.202007525. [77] WANG Y F, ZHANG Y X, WANG J J, et al. Aggregation-induced emission(AIE)fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems[J]. Adv Drug Deliv Rev, 2019, 143: 161-176. DOI:10.1016/j.addr.2018.12.004. [78] LIANG J, KWOK R T, SHI H, et al. Fluorescent light-up probe with aggregation-induced emission characteristics for alkaline phosphatase sensing and activity study[J]. ACS Appl Mater Interfaces, 2013, 5(17): 8784-8789. DOI:10.1021/am4026517. [79] SHEN X, LIANG F, ZHANG G, et al. A new continuous fluorometric assay for acetylcholinesterase activity and inhibitor screening with emissive core-shell silica particles containing tetraphenylethylene fluorophore[J]. Analyst, 2012, 137(9): 2119-2123. DOI:10.1039/c2an35154d. [80] GU X G, ZHANG G X, WANG Z, et al. A new fluorometric turn-on assay for alkaline phosphatase and inhibitor screening based on aggregation and deaggregation of tetraphenylethylene molecules[J]. Analyst, 2013, 138(8): 2427. DOI:10.1039/c3an36784c. [81] ZHANG W J, YANG H X, LI N, et al. A sensitive fluorescent probe for alkaline phosphatase and an activity assay based on the aggregation-induced emission effect[J]. RSC Adv, 2018, 8(27): 14995-15000. DOI:10.1039/c8ra01786g. [82] ZHAO M Y, LI B H, WU Y F, et al. A tumor-microenvironment-responsive lanthanide-cyanine FRET sensor for NIR-II luminescence-lifetime in situ imaging of hepatocellular carcinoma[J]. Adv Mater, 2020, 32(28): 2001172. DOI:10.1002/adma.202001172. [83] OWENS E A, HENARY M, EL FAKHRI G, et al. Tissue-specific near-infrared fluorescence imaging[J]. Acc Chem Res, 2016, 49(9): 1731-1740. DOI:10.1021/acs.accounts.6b00239. [84] YOSHINO F, AMANO T, ZOU Y J, et al. Preferential tumor accumulation of polyglycerol functionalized nanodiamond conjugated with cyanine dye leading to near-infrared fluorescence in vivo tumor imaging[J]. Small, 2020, 16(28): 2003468. DOI:10.1002/smll.202003468. [85] ZHANG Y, LV T, ZHANG H, et al. Folate and heptamethine cyanine modified chitosan-based nanotheranostics for tumor targeted near-infrared fluorescence imaging and photodynamic therapy[J]. Biomacromolecules, 2017, 18(7): 2146-2160. DOI:10.1021/acs.biomac.7b00466. [86] LI S H, ZHOU S X, LI Y C, et al. Exceptionally high payload of the IR780 iodide on folic acid-functionalized graphene quantum dots for targeted photothermal therapy[J]. ACS Appl Mater Interfaces, 2017, 9(27): 22332-22341. DOI:10.1021/acsami.7b07267. [87] POTARA M, NAGY-SIMON T, FOCSAN M, et al. Folate-targeted Pluronic-chitosan nanocapsules loaded with IR780 for near-infrared fluorescence imaging and photothermal-photodynamic therapy of ovarian cancer[J]. Colloids Surf B: Biointerfaces, 2021, 203: 111755. DOI:10.1016/j.colsurfb.2021.111755. [88] LI S J, LI C Y, LI Y F, et al. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo[J]. Anal Chem, 2017, 89(12): 6854-6860. DOI:10.1021/acs.analchem.7b01351. [89] TAN Y, ZHANG L, MAN K H, et al. Reaction-based off-on near-infrared fluorescent probe for imaging alkaline phosphatase activity in living cells and mice[J]. ACS Appl Mater Interfaces, 2017, 9(8): 6796-6803. DOI:10.1021/acsami.6b14176. [90] GAO Z W, SUN J Y, GAO M, et al. A unique off-on near-infrared cyanine-based probe for imaging of endogenous alkaline phosphatase activity in cells and in vivo[J]. Sens Actuat B: Chem, 2018, 265: 565-574. DOI:10.1016/j.snb.2018.03.078. [91] GAO X T, MA G C, JIANG C, et al. In vivo near-infrared fluorescence and photoacoustic dual-modal imaging of endogenous alkaline phosphatase[J]. Anal Chem, 2019, 91(11): 7112-7117. DOI:10.1021/acs.analchem.9b00109. [92] MENG X, ZHANG J, SUN Z, et al. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy[J]. Theranostics, 2018, 8(21): 6025-6034. DOI:10.7150/thno.26607. [93] LI Y H, DENG Y, LIU J, et al. A near-infrared frequency upconversion probe for nitroreductase detection and hypoxia tumor in vivo imaging[J]. Sens Actuat B: Chem, 2019, 286: 337-345. DOI:10.1016/j.snb.2019.02.002. ( |
[1] | 阴彩霞,熊康明,霍方俊. 7-羟基香豆素醛在检测次氯酸根中的应用[J]. 河北大学学报(自然科学版), 2018, 38(1): 28-32. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||