[1] LOHSE S E, MURPHY C J. Applications of colloidal inorganic nanoparticles: from medicine to energy[J]. Journal of the American Chemical Society, 2012, 134(38):15607-15620. DOI:10.1021/ja307589n. [2] HOERTZ P G, STANISZEWSKI A, MARTON A, et al. Toward exceeding the shockley-queisser limit: photoinduced interfacial charge transfer processes that store energy in excess of the equilibrated excited state[J]. Journal of the American Chemical Society, 2006, 128(25):8234-8245. DOI:10.1021/ja060470e. [3] NOZIK A J, BEARD M C, LUTHER J M, et al. Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells[J]. Chemical Reviews, 2010, 110(11):6873-6890. DOI: 10.1021/cr900289f. [4] SHEN K, LUO G, LIU J, et al. Highly transparent photoelectrochromic device based on carbon quantum dots sensitized photoanode[J]. Solar Energy Materials and Solar Cells, 2019, 1(193):372-378. DOI:10.1016/j.solmat.2019.01.004. [5] SAMBUR J B, NOVET T, PARKINSON B A. Multiple exciton collection in a sensitized photovoltaic system[J]. Science, 2010, 330(6000):63-66. DOI:10.1126/science.1191462. [6] LI Z, YU L, WANG H, et al. TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection[J]. Nanomaterials, 2020, 10(4):631. DOI:10.3390/nano10040631. [7] POLMAN A, ATWATER H A. Photonic design principles for ultrahigh-efficiency photovoltaics[J]. Nature Materials, 2012, 11(3):174-177. DOI:10.1038/nmat3263. [8] HOD I, ZABAN A. Materials and interfaces in quantum dot sensitized solar cells: challenges, advances and prospects[J]. Langmuir, 2014, 30(25):7264-7273. DOI:10.1021/la403768j. [9] NOZIK A. Quantum dot solar cells[J]. Physica E:Low-Dimensional Syst Nanostructures, 2002, 14(1-2):115-120. DOI:10.1016/S1386-9477(02)00374-0. [10] LEE Y L, LO Y S. Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe[J]. Advanced Functional Materials, 2009, 19(4):604-609. DOI:10.1002/adfm.200800940. [11] YUAN B, GAO Q, ZHANG X, et al. Reduced graphene oxide(RGO)/Cu2S composite as catalytic counter electrode for quantum dot-sensitized solar cells[J]. Electrochimica Acta, 2018, 1(277):50-58. DOI:10.1016/j.electacta.2018.04.218. [12] PAN Z, YUE L, RAO H, et al. Boosting the performance of environmentally friendly quantum dot-sensitized solar cells over 13% efficiency by dual sensitizers with cascade energy structure[J]. Advanced Materials, 2019, 31(49):1903696. DOI: 10.1002/adma.201903696. [13] CHANDIRAN A K, ABDI-JALEBI M, NAZEERUDDIN M K, et al. Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells[J]. ACS Nano, 2014, 8(3):2261-2268. DOI: 10.1021/nn405535j. [14] LU Y, JIA J, LU C, et al. Enhancing the photoelectrochemical properties of quantum dot-sensitized solar cells based on TiO2 nanorods by using fast hole transfer channels[J]. Materials Letters, 2019, 15(243):176-179. DOI:10.1016/j.matlet.2019.01.110. [15] HUANG K Y, LUO Y H, CHENG H M, et al. Performance enhancement of CdS/CdSe quantum dot-sensitized solar cells with(001)-oriented anatase TiO2 nanosheets photoanode[J]. Nanoscale Research Letters, 2019, 14(1):18. DOI:10.1186/s11671-018-2842-5. [16] SHEN W, ZHANG J, WANG S, et al. Improve the performance of the quantum dot sensitized ZnO nanotube solar cells with inserting ZnS-MnS composites layers[J]. Journal of Alloys and Compounds, 2019, 787:751-758. DOI:10.1016/j.jallcom.2019.02.108. [17] AHMED R, WILL G, BELL J, et al. Size-dependent photodegradation of CdS particles deposited onto TiO2 mesoporous films by SILAR method[J]. Journal of Nanoparticle Research, 2012, 14(9):1140. DOI:10.1007/s11051-012-1140-x. [18] BUATONG N, TANG I M, PON-ON W. Quantum dot-sensitized solar cells having 3D-TiO2 flower-like structures on the surface of titania nanorods with CuS counter electrode[J]. Nanoscale Research Letters, 2015, 10(1):1-10. DOI:10.1186/s11671-015-0844-0. [19] SANTRA P K, KAMAT P V. Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%[J]. Journal of the American Chemical Society, 2012, 134(5):2508-2511. DOI:10.1021/ja211224s. [20] DE LA FUENTE M S, SÁNCHEZ R S, GONZÁLEZ-PEDRO V, et al. Effect of organic and inorganic passivation in quantum-dot-sensitized solar cells[J]. The Journal of Physical Chemistry Letters, 2013, 4(9):1519-1525. DOI: 10.1021/jz400626r. [21] GOPI C V V M, VENKATA-HARITHA M, KIM S K, et al. Improved photovoltaic performance and stability of quantum dot sensitized solar cells using Mn-ZnSe shell structure with enhanced light absorption and recombination control[J]. Nanoscale, 2015, 7(29):12552-12563. DOI:10.1039/c5nr03291a. [22] MENG K, SUROLIA P K, BYRNE O, et al. Efficient CdS quantum dot sensitized solar cells made using novel Cu2S counter electrode[J]. Journal of Power Sources, 2014, 248:218-223. DOI:10.1016/j.jphotochem.2019.03.044. [23] KHODAM F, AMANI-GHADIM A R, ABER S. Preparation of CdS quantum dot sensitized solar cell based on ZnTi-layered double hydroxide photoanode to enhance photovoltaic properties[J]. Solar Energy, 2019, 181:325-332. DOI:10.1016/j.solener.2019.02.019. [24] LIU D, LIU J, LIU J, et al. The photovoltaic performance of CdS/CdSe quantum dots co-sensitized solar cells based on zinc titanium mixed metal oxides[J]. Physica E: Low-dimensional Systems and Nanostructures, 2020, 115:113669. DOI:10.1016/j.physe.2019.113669. [25] LV K, SHI C, MA C, et al. Introduction of polysulfide anions to increase the loading quantity of PbS quantum-dots for efficient solid-state quantum-dot sensitized TiO2 nanorod array solar cells[J]. Journal of Nanoparticle Research, 2019, 21(1):2. DOI:10.1007/s11051-018-4446-5. [26] ESPARZA D, ZARAZU 'A I, LÓPEZ-LUKE T, et al. Photovoltaic properties of Bi2S3 and CdS quantum dot sensitized TiO2 solar cells[J]. Electrochimica Acta, 2015, 180:486-492. DOI:10.1016/j.electacta.2015.08.102. [27] LI W, PENG Z, SUN Z, et al. Orientation modulation of ZnO nanorods on charge transfer performance enhancement for Sb2S3 quantum dot sensitized solar cells[J]. Journal of Alloys and Compounds, 2020, 816:152628. DOI:10.1016/j.jallcom.2019.152628. [28] ZHANG Q, GUO X, HUANG X, et al. Highly efficient CdS/CdSe-sensitized solar cells controlled by the structural properties of compact porous TiO2 photoelectrodes[J]. Physical Chemistry Chemical Physics, 2011, 13(10):4659-4667. DOI:10.1039/c0cp02099k. [29] BRAGA A, GIMÉNEZ S, CONCINA I, et al. Panchromatic sensitized solar cells based on metal sulfide quantum dots grown directly on nanostructured TiO2 electrodes[J]. The Journal of Physical Chemistry Letters, 2011, 2(5):454-460. DOI:10.1021/jz2000112. [30] GONZÁLEZ-PEDRO V, SIMA C, MARZARI G, et al. High performance PbS quantum dot sensitized solar cells exceeding 4% efficiency: the role of metal precursors in the electron injection and charge separation[J]. Physical Chemistry Chemical Physics, 2013, 15(33):13835-13843. DOI:10.1039/c3cp51651b. [31] DU J, DU Z, HU J S, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%[J]. Journal of the American Chemical Society, 2016, 138(12):4201-4209. DOI:10.1021/jacs.6b00615. [32] YANG J, ZHONG X. CdTe based quantum dot sensitized solar cells with efficiency exceeding 7% fabricated from quantum dots prepared in aqueous media[J]. Journal of Materials Chemistry A, 2016, 4(42):16553-16561. DOI:10.1039/c6ta07399a. [33] LI L, YANG X, ZHANG W, et al. Boron and sulfur co-doped TiO2 nanofilm as effective photoanode for high efficiency CdS quantum-dot-sensitized solar cells[J]. Journal of Power Sources, 2014, 272:508-512. DOI:10.1016/j.jpowsour.2014.08.116. [34] BAI Y, HAN C, CHEN X, et al. Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode[J]. Nano Energy, 2015, 13:609-619. DOI:10.1016/j.nanoen.2015.04.002. [35] ZARBSKA K, ŁCKI T, SKOMPSKA M. Synthesis of CdSe on FTO-supported ZnO nanorods by SILAR and electrochemical methods and comparison of photoelectrochemical properties of FTO/ZnO/CdSe systems in aqueous S2-/S2-n electrolyte[J]. Journal of Electroanalytical Chemistry, 2018, 819:459-468. DOI:10.1016/j.jelechem.2017.12.036. [36] LEE J W, SON D Y, AHN T K, et al. Quantum-dot-sensitized solar cell with unprecedentedly high photocurrent[J]. Scientific Reports, 2013, 3:1050. DOI:10.1038/srep01050. [37] BHANDE S S, AMBADE R B, SHINDE D V, et al. Improved photoelectrochemical cell performance of Tin oxide with functionalized multiwalled carbon nanotubes-cadmium selenide sensitizer[J]. ACS Applied Materials & Interfaces, 2015, 7(45):25094-25104. DOI:10.1021/acsami.5b05385. [38] KUMAR D K, LOSKOT J, K(ˇoverR)Í(ˇoverZ)J, et al. Synthesis of SnSe quantum dots by successive ionic layer adsorption and reaction(SILAR)method for efficient solar cells applications[J]. Solar Energy, 2020, 199:570-574. DOI:10.1016/j.solener.2020.02.050. [39] 舒婷. 量子点敏化太阳能电池电解质的研究进展[J]. 化学工程师, 2013,27(4): 42-44. DOI:10.3969/j.issn.1002-1124.2013.04-013. [40] DENG Y, LU S, XU Z, et al. Enhanced performance of CdS/CdSe quantum dot-sensitized solar cells by long-persistence phosphors structural layer[J]. Science China Materials, 2020, 63(4):516-523. DOI:10.1007/s40843-019-1248-6. [41] LEE H J, CHANG D W, PARK S M, et al. CdSe quantum dot(QD)and molecular dye hybrid sensitizers for TiO2 mesoporous solar cells: working together with a common hole carrier of cobalt complexes[J]. Chemical Communications, 2010, 46(46): 8788-8790. DOI:10.1039/c0cc03808c. [42] CHEBROLU V T, KIM H J. Recent progress in quantum dot sensitized solar cells: an inclusive review of photoanode, sensitizer, electrolyte, and the counter electrode[J]. Journal of Materials Chemistry C, 2019, 7(17):4911-4933. DOI:10.1039/c8tc06476h. [43] ZHAO K, YU H, ZHANG H, et al. Electroplating cuprous sulfide counter electrode for high-efficiency long-term stability quantum dot sensitized solar cells[J]. The Journal of Physical Chemistry C, 2014, 118(11):5683-5690. DOI:10.1021/jp4118369. [44] TYAGI J, GUPTA H, PUROHIT L P. Cascade structured ZnO/TiO2/CdS quantum dot sensitized solar cell[J]. Solid State Sciences, 2020, 102:106176. DOI:10.1016/j.solidstatesciences.2020.106176. [45] GUO W, ZHANG X, YU R, et al. CoS NWs/Au hybridized networks as efficient counter electrodes for flexible sensitized solar cells[J]. Advanced Energy Materials, 2015, 5(11):1500141. DOI:10.1002/aenm.201500141. [46] WANG G, DONG W, MA P, et al. Interconnected nitrogen and sulfur co-doped graphene-like porous carbon nanosheets with high electrocatalytic activity as counter electrodes for dye-sensitized and quantum dot-sensitized solar cells[J].Electrochimica Acta, 2018, 290: 273-281. DOI: 10.1016/j.electacta. 2018.09.063. [47] HESSEIN A, EL-MONEIM A A. Hybrid CuS-PEOT: PSS counter electrode for quantum sensitized solar cell[J].Optik, 2019, 193: 162974. DOI: 10.1016/j.ijleo.2019.162974. [48] CHEN Y, ZHANG X, TAO Q, 2015. High catalytic activity of a PbS counter electrode prepared via chemical bath deposition for quantum dots-sensitized solar cells[J]. RSC Advances, 2015, 5(3), 1835-1840. DOI: 10.1039/c4ra08076a. [49] QUY V H V, VIJAYAKUMAR E, HO P, et al. Electrodeposited MoS2 as electrocatalytic counter electrode for quantum dot-and dye-sensitized solar cells[J]. Electrochimica Acta, 2018, 260: 716-725. DOI. 10.1016/j.electacta.2017.12.023. [50] SARKAR A, BERA S, CHAKROBORTY A. NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell[J].Solar Energy Materials and Solar Cells,2018,182: 314-320. DOI.10.1016/j.solmat.2018.03.026. [51] GOPI C V, BAE J H, VENKATA-HARITHA M, et al. One-step synthesis of solution processed time-dependent highly efficient and stable PbS counter electrodes for quantum dot-sensitized solar cells[J]. RSC Advances, 2015, 130:107522-107532. DOI:10.1039/c5ra22715a. [52] SELOPAL G S, CONCINA I, MILAN R, et al. Hierarchical self-assembled Cu2S nanostructures: Fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells[J]. Nano Energy, 2014, 6:200-210. DOI:10.1016/j.nanoen.2014.04.003. [53] LUO S, KE J, YUAN M, et al. CuInS2 quantum dots embedded in Bi2WO6 nanoflowers for enhanced visible light photocatalytic removal of contaminants[J]. Applied Catalysis B: Environmental, 2018, 221:215-222. DOI:10.1016/j.apcatb.2017.09.028. |