[1] JUN H K, TUNG H T. A short overview on recent progress in semiconductor quantum dot-sensitized solar cells[J]. J Nanomater, 2022, 2022: 1-7. DOI: 10.1155/2022/1382580. [2] SAHU A, GARG A, DIXIT A. A review on quantum dot sensitized solar cells: past, present and future towards carrier multiplication with a possibility for higher efficiency[J]. Sol Energy, 2020, 203: 210-239. DOI: 10.1016/j.solener.2020.04.044. [3] RASAL A S, YADAV S, KASHALE A A, et al. Stability of quantum dot-sensitized solar cells: a review and prospects[J]. Nano Energy, 2022, 94: 106854. DOI: 10.1016/j.nanoen.2021.106854. [4] SHEN K, LUO G, LIU J, et al. Highly transparent photoelectrochromic device based on carbon quantum dots sensitized photoanode[J]. Sol Energy Mat Sol C, 2019, 193: 372-378. DOI: 10.1016/j.solmat.2019.01.004. [5] GANGADHAR L, PRASEETHA P K. A novel modeling of quantum dot sensitized solar cells[J]. J Comput Theor Nanosci, 2019, 16(2): 389-392. DOI: 10.1166/jctn.2019.7737. [6] DU Z L, ARTEMYEV M, WANG J, et al. Performance improvement strategies for quantum dot-sensitized solar cells: a review[J]. J Mater Chem A, 2019, 7(6): 2464-2489. DOI: 10.1039/C8TA11483H. [7] SINGH S, KHAN Z H, KHAN M B, et al. Quantum dots-sensitized solar cells: a review on strategic developments[J].B Mater Sci, 2022, 45(2): 1-13. DOI: 10.1007/s12034-022-02662-z. [8] LI Z, YU L B, WANG H, et al. TiO2 passivation layer on ZnO hollow microspheres for quantum dots sensitized solar cells with improved light harvesting and electron collection[J]. Nanomaterials, 2020, 10(4): 631. DOI: 10.3390/nano10040631. [9] HE J J, LINDSTR M H, HAGFELDT A, et al. Dye-sensitized nanostructured p-type nickel oxide film as a photocathode for a solar cell[J]. J Phys Chem B, 1999, 103(42): 8940-8943. DOI: 10.1021/jp991681r. [10] ALVARADO-ARAMBURO A, GONZALEZ-ORTIZ L J, GARCIA-BON M A, et al. The recent use of nanoporous materials in the development of third-generation solar cells: a review[J]. IEEE Nanotechnol Mag, 2021, 15(2): 37-48. DOI: 10.1109/MNANO.2020.3048092. [11] BONOMO M, EKOI E J, MARRANI A G, et al. NiO/ZrO2 nanocomposites as photocathodes of tandem DSCs with higher photoconversion efficiency with respect to parent single-photoelectrode p-DSCs[J]. Sustain Energy Fuels, 2021, 5(18): 4736-4748. DOI: 10.1039/D1SE00566A. [12] PAN Z X, YUE L, RAO H S, et al. Boosting the performance of environmentally friendly quantum dot-sensitized solar cells over 13% efficiency by dual sensitizers with cascade energy structure[J]. Adv Mater, 2019, 31(49): 1903696. DOI: 10.1002/adma.201903696. [13] POTTS N T Z, SLOBODA T, W CHTLER M, et al. Probing the dye-semiconductor interface in dye-sensitized NiO solar cells[J]. J Chem Phys, 2020, 153(18): 184704. DOI: 10.1063/5.0023000. [14] GELETA T A, IMAE T. Nanocomposite photoanodes consisting of p-NiO/n-ZnO heterojunction and carbon quantum dot additive for dye-sensitized solar cells[J]. ACS Appl Nano Mater, 2021, 4(1): 236-249. DOI: 10.1021/acsanm.0c02547. [15] SULTAN U, AHMADLOO F, CHA G, et al. A high-field anodic NiO nanosponge with tunable thickness for application in p-type dye-sensitized solar cells[J]. ACS Appl Energy Mater, 2020, 3(8): 7865-7872. DOI: 10.1021/acsaem.0c01249. [16] QU J, ZHANG K, GAMAL H, et al. Triple-shell NiO hollow sphere for p-type dye-sensitized solar cell with superior light harvesting[J]. Sol Energy, 2021, 216: 238-244. DOI: 10.1016/j.solener.2021.01.026. [17] NATTESTAD A, MOZER A J, FISCHER M K R, et al. Highly efficient photocathodes for dye-sensitized tandem solar cells[J]. Nat Mater, 2010, 9(1): 31-35. DOI: 10.1038/nmat2588. [18] TIAN H N, XU B, CHEN H, et al. Solid-state perovskite-sensitized p-type mesoporous nickel oxide solar cells[J]. Chem Sus Chem, 2014, 7(8): 2150-2153. DOI: 10.1002/cssc.201402032. [19] BENAZZI E, MALLOWS J, SUMMERS G H, et al. Developing photocathode materials for p-type dye-sensitized solar cells[J]. J Mater Chem C, 2019, 7(34): 10409-10445. DOI: 10.1039/C9TC01822K. [20] BONOMO M, DI GIROLAMO D, PICCINNI M, et al. Electrochemically deposited NiO films as a blocking layer in p-type dye-sensitized solar cells with an impressive 45% fill factor[J]. Nanomaterials, 2020, 10(1): 167. DOI: 10.3390/nano10010167. [21] XU B, TIAN L, ETMAN A S, et al. Solution-processed nanoporous NiO-dye-ZnO photocathodes: toward efficient and stable solid-state p-type dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells[J]. Nano Energy, 2019, 55: 59-64. DOI: 10.1016/j.nanoen.2018.10.054. [22] DAENEKE T, YU Z, LEE G P, et al. Dominating energy losses in NiO p-type dye-sensitized solar cells[J]. Adv Energy Mater, 2015, 5(4): 1401387. DOI: 10.1002/aenm.201401387. [23] MACDONALD T J, MANGE Y J, DEWI M R, et al. CuInS2/ZnS nanocrystals as sensitisers for NiO photocathodes[J]. J Mater Chem A, 2015, 3(25): 13324-13331. DOI: 10.1039/C5TA01821H. [24] RAISSI M, PELLEGRIN Y, JOBIC S, et al. Infra-red photoresponse of mesoscopic NiO-based solar cells sensitized with PbS quantum dot[J]. Sci Rep, 2016, 6: 24908. DOI: 10.1038/srep24908. [25] LIU S, LIU L, DU Q Z, et al. Preparation of PbS/NiO composite photocathode and their applications in quantum dot sensitized solar cells[J]. J New Mater Electr Sys, 2020, 23(1): 7-12. DOI: 10.14447/jnmes.v23i1.a02. ( |