[1] NEIDLE S. Quadruplex nucleic acids as targets for anticancer therapeutics[J]. Nature Reviews Chemistry, 2017, 1(5): 1-10. DOI:10.1038/s41570-017-0041. [2] HAGER L A, MOKESCH S, KIELER C, et al. Ruthenium-arene complexes bearing naphthyl-substituted 1,3-dioxoindan-2-carboxamides ligands for G-quadruplex DNA recognition[J]. Dalton Transactions, 2019, 48: 12040-12049. DOI:10.1039/c9dt02078k. [3] WUMAIER M, SHI J J, YAO T M, et al. G-quadruplex and duplex DNA binding studies of novel Ruthenium(Ⅱ)complexes containing ascididemin ligands[J]. Journal of Inorganic Biochemistry, 2019, 196: 110681. DOI:10.1016/j.jinorgbio.2019.03.021. [4] HUPPERT J L, BALASUBRAMANIAN S. G-quadruplexes in promoters throughout the human genome[J]. Nucleic Acids Research, 2007, 35: 406-413. DOI:10.1093/nar/gkl1057. [5] MURAT P, ZHONG J, LEKIEFFRE L, et al. G-quadruplexes regulate Epstein-Barr virus-encoded nuclear antigen 1 mRNA translation[J]. Nature Chemical Biology, 2014, 10: 358-364. DOI:10.1038/nchembio.1479. [6] MATHAD R I, HATZAKIS E, DAI J X, et al. c-MYC promoter G-quadruplex formed at the 5'-end of NHE III1 element: insights into biological relevance and parallel-stranded G-quadruplex stability[J]. Nucleic Acids Research, 2011, 39: 9023-9033. DOI:10.1093/nar/gkr612. [7] WANG X N, SU X X, CHENG S Q, et al. MYC modulators in cancer: a patent review[J]. Expert Opinion on Therapeutic Patents, 2019, 29(5): 353-367. DOI:10.1080/13543776.2019.1612878. [8] UMAR M I, JI D Y, CHAN C Y, et al. G-guadruplex-based fluorescent turn-on ligands and aptamers: from development to applications[J]. Molecules, 2019, 24: 2416. DOI:10.3390/molecules24132416. [9] WANG K B, ELSAYED M S A, WU G H, et al. Indenoisoquinoline topoisomerase inhibitors strongly bind and stabilize the MYC promoter G-quadruplex and downregulate MYC[J]. Journal of the American Chemical Society, 2019, 141: 11059-11070. DOI:10.1021/jacs.9b02679. [10] KLEJEVSKAJA B, PYNE A L B, REYNOLDS M, et al. Studies of G-quadruplexes formed within self-assembled DNA mini-circles[J]. Chemical Communications, 2016, 52: 12454-12457. DOI:10.1039/C6CC07110D. [11] YU Q Q, LIU Y Y, ZHANG J N, et al. Ruthenium(Ⅱ)polypyridyl complexes as G-quadruplex inducing and stabilizing ligands in telomeric DNA[J]. Metallomics, 2013, 5: 222-231. DOI:10.1039/C3MT20214C. [12] FLOREA A M, BÜSSELBERG D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects[J]. Cancers, 2011, 3: 1351-1371. DOI:10.3390/cancers3011351. [13] XU L, ZHANG P P, FANG X Q, et al. A ruthenium(Ⅱ)complex containing a p-cresol group induces apoptosis in human cervical carcinoma cells through endoplasmic reticulum stress and reactive oxygen species production[J]. Journal of Inorganic Biochemistry, 2019, 191: 126-134. DOI:10.1016/j.jinorgbio.2018.11.015. [14] MENG T, QIN Q P, CHEN Z L, et al. Discovery of a high in vitro and in vivo antitumor activities of organometallic ruthenium(Ⅱ)-arene complexes with 5,7-dihalogenated-2-methyl-8-quinolinol[J]. Dalton Transactions, 2019, 48: 5352-5360. DOI:10.1039/C9DT00866G. [15] WEYNAND J, DIMAN A, ABRAHAM M, et al. Towards the development of photo-reactive ruthenium(Ⅱ)complexes targeting telomeric G-quadruplex DNA[J]. Chemistry-A European Journal, 2018, 24: 19216-19227. DOI:10.1002/chem.201804771. [16] ZHANG S Y, WU Q, ZHANG H, et al. Microwave-assisted synthesis of ruthenium(Ⅱ)complexes with alkynes as potential inhibitor by selectively recognizing c-myc G-quadruplex DNA[J]. Journal of Inorganic Biochemistry, 2017, 176: 113-122. DOI:10.1016/j.jinorgbio.2017.08.005. [17] LI L, LIU H M, LIU X K, et al. A Ruthenium(Ⅱ)complex as a potential luminescent switch-on probe for G-quadruplex DNA[J]. RSC Advances, 2017, 7: 23727-23734. DOI:10.1039/c7ra01853c. [18] LIU Y, LIU Y N, YANG L C, et al. Stabilization for loop isomers of c-myc Gquadruplex DNA and anticancer activity by ruthenium complexes[J]. Med Chem Comm, 2014, 5: 1724-1728. DOI:10.1039/c4md00201f. [19] SUNTHARALINGAM K, WHITE A J P, VILAR R, et al. Two metals are better than one: investigations on the interactions between dinuclear metal complexes and quadruplex DNA[J]. Inorganic Chemistry, 2010, 49: 8371-8380. DOI:10.1021/ic100884p. [20] XU L, CHEN X, WU J H, et al. Dinuclear ruthenium(Ⅱ)complexes that induce and stabilise G-quadruplex DNA[J]. Chemistry-A European Journal, 2015, 21: 4008-4020. DOI:10.1002/chem.201405991. [21] ARCHER S A, RAZA A, DRÖGE F, et al. A dinuclear ruthenium(Ⅱ)phototherapeutic that targets duplex and quadruplex DNA[J]. Chemical Science, 2019, 10: 3502-3513. DOI:10.1039/c8sc05084h. [22] XU L, ZHANG D, HUANG J, et al. High fluorescence selectivity and visual detection of G-quadruplex structures by a novel dinuclear ruthenium complex[J]. Chemical Communications, 2010, 46: 743-745. DOI:10.1039/b918045a. [23] ZHAO H Q, XU X X, WANG S, et al. A dinuclear ruthenium(Ⅱ)complex as an inducer and potential luminescent switch-on probe for G-quadruplex DNA[J]. Transition Metal Chemistry, 2018, 43: 539-548. DOI:10.1007/s11243-018-0240-6. [24] ZHANG Z, MEI W J, WU X H, et al. Synthesis and characterization of chiral ruthenium(Ⅱ)complexes Λ/Δ-[Ru(bpy)2(H2iip)] (ClO4)2 as stabilizers of c-myc G-quadruplex DNA[J]. Journal of Coordination Chemistry, 2015, 68(8): 1465-1475. DOI:10.1080/00958972.2015.1014352. [25] ZHANG Z, WU Q, WU X H, et al. Ruthenium(Ⅱ)complexes as apoptosis inducers by stabilizing c-myc G-quadruplex DNA[J]. European Journal of Medicinal Chemistry, 2014, 80: 316-324. DOI:10.1016/j.ejmech.2014.04.070. [26] YU H J, YU L, HAO Z F, et al. Interactions of ruthenium complexes containing indoloquinoline moiety with human telomeric G-quadruplex DNA[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 124: 187-193. DOI:10.1016/j.saa.2013.12.096. [27] SUN J, AN Y, ZHANG L, et al. Studies on synthesis, characterization, and G-quadruplex binding of Ru(Ⅱ)complexes containing two dppz ligands[J]. Journal of Inorganic Biochemistry, 2011, 105: 149-154. DOI:10.1016/j.jinorgbio.2010.10.005. [28] MARDANYA S, KARMAKAR S, MONDAL D, et al. Homo- and heterobimetallic ruthenium(Ⅱ)and osmium(Ⅱ)complexes based on a pyrene-biimidazolate spacer as efficient DNA-binding probes in the near-infrared domain[J]. Inorganic Chemistry, 2016, 55(7): 3475-3489. DOI:10.1021/acs.inorgchem.5b02912. [29] LIU D, LIU Y N, WANG C, et al. Polypyridyl complexes of ruthenium(Ⅱ): stabilization of G-quadruplex DNA and inhibition of telomerase activity[J]. Chem Plus Chem, 2012, 77(7): 551-562. DOI:10.1002/cplu.201200039. [30] LIU Y, LIU Y N, YANG L C, et al. Stabilization for loop isomers of c-myc G-quadruplex DNA and anticancer activity by ruthenium complexes[J]. Med Chem Comm, 2014, 5(11): 1724-1728. DOI:10.1039/C4MD00201F. [31] LU X H, SHI S, YAO J L, et al. Two structurally analogous ruthenium complexes as naked-eye and reversible molecular “light switch” for G-quadruplex DNA[J]. Journal of Inorganic Biochemistry, 2014, 140: 64-71. DOI:10.1016/j.jinorgbio.2014.07.003. [32] YAO J L, GAO X, SUN W L, et al. [Ru(bpy)2dppz-idzo] 2+: a colorimetric molecular “light switch” and powerful stabilizer for G-quadruplex DNA[J]. Dalton Transactions, 2013, 42(16): 5661-5672. DOI:10.1039/c3dt32640c. [33] WU Q, CHEN T F, ZHANG Z, et al. Microwave-assisted synthesis of arene ruthenium(Ⅱ)complexes [(η6-RC6H5)Ru(m-MOPIP)Cl] Cl(R =-H and-CH3)as groove binder to c-myc G4 DNA[J]. Dalton Transactions, 2014, 43(24): 9216-9225. DOI:10.1039/c3dt53635a. [34] WU Q, LIAO S Y, YU G N, et al. High-order self-assembly of G-quadruplex DNA: Nano-network formation under the guidance of arene ruthenium(Ⅱ)complexes[J]. Journal of Inorganic Biochemistry, 2018, 189: 81-90. DOI:10.1016/j.jinorgbio.2018.09.010. ( |