[1] 张璇,唐庆龙,张铭杰,等.深圳市绿地植被凋落物存留特征及其影响因素[J].北京大学学报(自然科学版),2011,47(3):545-551.DOI:10.13209/j.0479-8023.2011.077. [2] 魏雯,李哲惠.城市绿地生态服务价值评估研究进展[J].安徽农业科学,2016,44(30):156-159.DOI:10.3969/j.issn.0517-6611.2016.30.054. [3] KAMBO H S, DUTTA A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications[J]. Renew Sust Energ Rev, 2015, 45: 359-378. DOI:10.1016/j.rser.2015.01.050. [4] 李玉姣.生物质炭及其复合材料的制备及应用性能研究[D].长春: 吉林大学,2015. [5] 徐永荣,张万均,冯宗炜,等.天津滨海盐渍土上几种植物的热值和元素含量及其相关性[J].生态学报,2003,23(3): 450-455.DOI:10.3321/j.issn:1000-0933.2003.03.007. [6] 张彦广,李惠卓,高如泰,等.燕山中段植物枯落物中的灰分及营养元素[J].林业科学,2007,43(S1):7-11.DOI:10.3321/j.issn:1001-7488.2007.z1.002. [7] SOHI S P. Carbon storage with benefits[J]. Science, 2012, 338(6110): 1034-1035. DOI:10.1126/science.1225987. [8] BEESLEY L, MORENO-JIMENEZ E, GOMEZ-EYLES J L. Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J]. Environ Pollut, 2010, 158(6): 2282-2287. DOI:10.1016/j.envpol.2010.02.003. [9] 林琳,万金忠,李群,等.生物炭负载纳米零价铁材料的制备及还原降解性能[J].生态与农村环境学报,2017,33(7):660-664.DOI:10.11934/j.issn.1673-4831.2017.07.011. [10] ACOSTA R, FIERRO V, DE YUSO A M, et al. Tetracycline adsorption onto activated carbons produced by KOH activation of tyre pyrolysis char[J]. Chemosphere, 2016, 149: 168-176. DOI:10.1016/j.chemosphere.2016.01.093. [11] AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions[J]. J Environ Manage, 2014, 146: 444-450. DOI:10.1016/j.jenvman.2014.07.029. [12] SHAHEEN S M, NIAZI N K, HASSAN N E E, et al. Wood-based biochar for the removal of potentially toxic elements in water and wastewater: a critical review[J]. Int Mater Rev, 2019, 64(4): 216-247. DOI:10.1080/09506608.2018.1473096. [13] IPPOLITO J A, DUCEY T F, CANTRELL K B, et al. Designer, acidic biochar influences calcareous soil characteristics[J]. Chemosphere, 2016, 142: 184-191. DOI:10.1016/j.chemosphere.2015.05.092. [14] LI B, FAN C H, ZHANG H, et al. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China[J]. Atmos Environ, 2015, 100: 10-19. DOI:10.1016/j.atmosenv.2014.10.034. [15] LEHMANN J. A handful of carbon[J]. Nature, 2007, 447(7141):143-144. DOI:10.1038/447143a. [16] 王怀臣,冯雷雨,陈银广.废物资源化制备生物质炭及其应用的研究进展[J].化工进展, 2012,31(4):907-914.DOI:10.16085/j.issn.1000-6613.2012.04.035. [17] 辛旺,宋永会,张亚迪,等.污泥基碳吸附材料的制备及其吸附性能研究进展[J].环境工程技术学报,2017,7(3):306-317.DOI:10.3969j.issn.1674-991X.2017.03.044. [18] HAYES M H B. Biochar and biofuels for a brighter future[J]. Nature, 2006, 443(7108): 144. DOI:10.1038/443144c. [19] 杨仲禹,韩继铖,李解,等.微波辅助碳酸钾活化制备玉米秆基活性生物炭[J].材料科学与工程学报,2015,33(6):903-907, 902.DOI:10.14136/j.cnki.issn 1673-2812.2015.06.026. [20] 吕宏虹,宫艳艳,唐景春,等.生物炭及其复合材料的制备与应用研究进展[J].农业环境科学学报,2015, 34(8):1429-1440.DOI:10.11654/jaes.2015.08.001. [21] AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms: review and research needs[J]. Eur J Soil Sci, 2013, 64(4): 379-390. DOI:10.1111/ejss.12064. [22] BRIDGWATER A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chem Eng J, 2003, 91(2/3): 87-102. DOI:10.1016/S1385-8947(02)00142-0. [23] SCHEER C, GRACE P R, ROWLINGS D W, et al. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in northern New South Wales, Australia[J]. Plant Soil, 2011, 345(1/2): 47-58. DOI:10.1007/s11104-011-0759-1. [24] 陆海楠,胡学玉,刘红伟.不同裂解条件对生物炭稳定性的影响[J].环境科学与技术,2013,36(8):11-14.DOI:10.3969/j.issn.1003-6504.2013.08.003. [25] SUKSABYE P, PIMTHONG A, DHURAKIT P, et al. Effect of biochars and microorganisms on cadmium accumulation in rice grains grown in Cd-contaminated soil[J]. Environ Sci Pollut R, 2016, 23(2): 962-973. DOI:10.1007/s11356-015-4590-8. [26] NIGAM N, KHARE P, YADAV V, et al. Biochar-mediated sequestration of Pb and Cd leads to enhanced productivity in Mentha arvensis[J]. Ecotox Environ Safe, 2019, 172: 411-422. DOI:10.1016/j.ecoenv.2019.02.006. [27] MOHAN D, KUMAR H, SARSWAT A, et al. Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars[J]. Chem Eng J, 2014, 236: 513-528. DOI:10.1016/j.cej.2013.09.057. [28] INYANG M, GAO B, ZIMMERMAN A, et al. Synthesis, characterization, and dye sorption ability of carbon nanotube biochar nanocomposites[J]. Chem Eng J, 2014, 236: 39-46. DOI:10.1016/j.cej.2013.09.074. [29] ZHANG M, GAO B. Removal of arsenic, methylene blue, and phosphate by biochar/AlOOH nanocomposite[J]. Chem Eng J, 2013, 226: 286-292. DOI:10.1016/j.cej.2013.04.077. [30] SONG Z G, LIAN F, YU Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution[J]. Chem Eng J, 2014, 242: 36-42. DOI:10.1016/j.cej.2013.12.061. [31] 解宏端,孙学凯,田丹,等.活性碳纤维负载镧掺杂二氧化钛处理印染废水[J].水处理技术,2019,45(6):106-110.DOI:10.16796/j.cnki.1000-3770.2019.06.023. [32] MEHMOOD S, RIZWAN M, BASHIR S, et al. Comparative effects of biochar, slag and ferrous-Mn ore on lead and cadmium immobilization in soil[J]. B Environ Contam Tox, 2018, 100(2): 286-292. DOI:10.1007/s00128-017-2222-3. [33] 黄永东,杜应琼,陈永坚,等.生物炭基钼肥对土壤无机氮形态转化的影响[J].生态环境学报,2018,27(1):40-46.DOI:10.16258/j.cnki.1674-5906.2018.01.006. [34] 袁晶晶,同延安,卢绍辉,等.生物炭与氮肥配施对枣园土壤培肥效应的综合评价[J].农业工程学报,2018,34(1):134-140.DOI:10.11975/j.issn.1002-6819.2018.01.018. ( |