[1] KRISTOF J, AOSHIMA T, BLAJAN M, et al. Surface modification of stratum corneum for drug delivery and skin care by microplasma discharge treatment[J]. Plasma Sci Technol, 2019, 21(6): 064001. DOI:10.1088/2058-6272/aafde6. [2] HAO C J,YAN Z Y, LIU KEFU, et al. Degradation of pharmaceutical contaminant tetracycline in aqueous solution by coaxial-type DBD plasma reactor[J]. IEEE Transations on plasma science, 2020, 48(2): 471-481. DOI:10.1109/TPS.2020.2964612. [3] MASSINES F, GHERARDI N, NAUDÉN, et al. Recent advances in the understanding of homogeneous dielectric barrier discharges[J]. Eur Phys J Appl Phys, 2009, 47(2): 22805. DOI:10.1051/epjap/2009064. [4] PERVEZ M R, ISHIJIMA T, BEGUM A, et al. Systematic investigation of the effect of N2 admixture ratio on barrier discharge in helium[J]. J Phys D: Appl Phys, 2019, 52(6): 065202. DOI:10.1088/1361-6463/aaf047. [5] 李和平,于达仁,孙文廷,等.大气压放电等离子体研究进展综述[J].高电压技术,2016,42(12): 3697-3727.DOI:10.13336/j.1003-6520.hve.20161128001. [6] LI C X,DONG L FFENG J Y, et al. Study on bright-dim hollow hexagonal superlattice pattern in dielectric barrier discharge[J]. Phys Plasmas, 2019, 26(2): 023505. DOI:10.1063/1.5066222. [7] GUREVICH E L, ZANIN A L, MOSKALENKO A S, et al. Concentric-ring patterns in a dielectric barrier discharge system[J]. Phys Rev Lett, 2003, 91(15): 154501. DOI:10.1103/physrevlett.91.154501. [8] DAI D, ZHAO X F, WANG Q M. Inverse period-doubling bifurcation in an atmospheric helium dielectric barrier discharge[J]. EPL Europhys Lett, 2014, 107(1): 15002. DOI:10.1209/0295-5075/107/15002. [9] WANG Y H, ZHANG Y T, WANG D Z, et al. Period multiplication and chaotic phenomena in atmospheric dielectric-barrier glow discharges[J]. Appl Phys Lett, 2007, 90(7): 071501. DOI:10.1063/1.2475831. [10] ZHANG J, WANG Y H, WANG D Z. Numerical study of period multiplication and chaotic phenomena in an atmospheric radio-frequency discharge[J]. Phys Plasmas, 2010, 17(4): 043507. DOI:10.1063/1.3392291. [11] ZHANG J, WANG Y H, WANG D Z. Numerical simulation of torus breakdown to chaos in an atmospheric-pressure dielectric barrier discharge[J]. Phys Plasmas, 2013, 20(8): 082315. DOI:10.1063/1.4819722. [12] 王敦青,戴栋,郝艳捧,等.大气压氦气介质阻挡放电倍周期分岔及混沌现象的实验验证[J].物理学报,2012,61(23):89-94. [13] 戴栋,张雨晖,宁文军.大气压氦气辉光放电中正柱区消散特性对时域非线性行为的影响[J].高电压技术,2017,43(6):1766-1774.DOI:10.13336/j.1003-6520.hve.20170527003. [14] LIU F C, HE Y F, WANG X F. Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure[J]. Chinese Phys B, 2014, 23(7): 075209. DOI:10.1088/1674-1056/23/7/075209. [15] GADKARI S, GU S. Numerical investigation of co-axial DBD: Influence of relative permittivity of the dielectric barrier, applied voltage amplitude, and frequency[J]. Phys Plasmas, 2017, 24(5): 053517. DOI:10.1063/1.4982657. [16] WU, S Q, HUANG G W, CHENG W X, et al. The influences of the electrode dimension and the dielectric materiral on the breakdown characteristics of coplanar dielectric barrier discharge in ambient air[J]. Plasma Process Polym, 2017, 14: 1700112. DOI:10.1002/ppap.201700112. [17] SONG P, ZHANG W, CHEN L, et al. Experimental Study on Ionization Characteristics of Dielectric Barrier Discharge with Different Electrode Structures[J]. Spectroscopy And Spectral Analysis, 2019, 39(2): 410-414. DOI:10.3964/j.issn.1000-0593(2019)02-0410-05 [18] ZHANG D Z, WANG Y H, WANG D Z. Numerical study on the discharge characteristics and nonlinear behaviors of atmospheric pressure coaxial electrode dielectric barrier discharges[J]. Chin Phys B, 2017, 26(6): 065206. DOI:10.1088/1674-1056/26/6/065206. [19] QI B, HUANG J J, ZHANG Z H, et al. Observation of periodic multiplication and chaotic phenomena in atmospheric Cold Plasma Jets[J]. Chin Phys Lett, 2008, 25(9): 3323-3325. DOI:10.1088/0256-307X/25/9/061. [20] LI X C, ZHAO N, FANG T Z, et al. Characteristics of an atmospheric pressure argon glow discharge in a coaxial electrode geometry[J]. Plasma Sources Sci Technol, 2008, 17(1): 015017. DOI:10.1088/0963-0252/17/1/015017. ( |