河北大学学报(自然科学版) ›› 2022, Vol. 42 ›› Issue (2): 118-123.DOI: 10.3969/j.issn.1000-1565.2022.02.002

• • 上一篇    下一篇

多元Fuzzy连续函数Korovkin逼近定理

陈英伟,常之魁,王志军   

  • 收稿日期:2020-09-16 出版日期:2022-03-25 发布日期:2022-04-12
  • 作者简介:陈英伟(1976—),男,河北鸡泽人,河北经贸大学副教授,博士,主要从事多复变与逼近论、数学建模、应用统计等方向研究. E-mail: stchenyingwei@heuet.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11801132);河北省教育厅科技重点项目(ZD2020109)

Korovkin approximation theorem on fuzzy continuous functions of several variables

CHEN Yingwei, CHANG Zhikui, WANG Zhijun   

  1. College of Mathematics and Statistics, Hebei University of Economics and Business, Shijiazhuang 050061, China
  • Received:2020-09-16 Online:2022-03-25 Published:2022-04-12

摘要: 对多元模糊值周期连续函数,三角逼近的Korovkin逼近定理可由模糊型连续模获得,最后给出了有关模糊值函数的Fejér算子逼近的应用.

关键词: 模糊值连续函数, Korovkin定理, 模糊集理论, Fejér算子

Abstract: We prove the trigonometric Korovkin approximation theorem for fuzzy valued functions of several variables and verify the approximation via the fuzzy modulus of continuity. Some applications concerning Fejér operators of fuzzy valued functions are also given.

Key words: fuzzy valued continuous function, Korovkin approximation theorem, fuzzy set theory, Fejér operator

中图分类号: