[1] 于亚新,刘梦,张宏宇.Twitter社交网络用户行为理解及个性化服务推荐算法研究[J].计算机研究与发展, 2020, 57(7): 1369-1380. DOI: 10.7544/issn1000-1239.2020.20190158. [2] 新浪科技.微博2021年第三季度财报[EB/OL]. [2021-11-12]. https://weibo.com/1642634100//L10O1BwkR.2021.11. [3] GREWAL A, LIN J. The evolution of content analysis for personalized recommendations at Twitter[C] //Proceedings of the 41th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2018: 1355-1356. DOI: 10.1145/3209978.3210206. [4] CHEN L, LYU D D, XU Z X, et al. A content-location-aware public welfare activity information push system based on microblog[J]. Information Processing and Management, 2020, 57(1): 102137.1-102137.12. DOI: 10.1016/j.ipm.2019.102137. [5] WANG Y R, DING S F, XU X, et al. The multi-tag semantic correlation used for micro-blog user interest modeling[J]. Engineering Applications of Artificial Intelligence, 2019, 85(10): 765-772. DOI: 10.1016/j.engappai.2019.08.007. [6] 马慧芳,张迪,赵卫中,等.基于超图随机游走标签扩充的微博推荐方法[J].软件学报, 2019, 30(11): 3397-3412. DOI: 10.13328/j.cnki.jos.005545. [7] SUN A X. Short text classification using very few words[C] //Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2012: 1145-1146. DOI: 10.1145/2348283.2348511. [8] 王战平,夏榕.基于社会化标签挖掘的微博内容推荐方法研究[J].情报科学, 2021, 39(5): 91-96. DOI: 10.13833/j.issn.1007-7634.2021.05.013. [9] 王臻皇,陈思明,袁晓如.面向微博主题的可视分析研究[J].软件学报, 2018, 29(4): 1115-1130. DOI: 10.13328/j.cnki.jos.005261. [10] 邢千里,刘列,刘奕群,等.微博中用户标签的研究[J].软件学报, 2015, 26(7): 1626-1637. DOI: 10.13328/j.cnki.jos.004655. [11] 郑伟,侯宏旭,班志杰.贝叶斯网络查询语义扩展的专家发现方法[J].计算机工程与应用, 2020, 56(13): 194-198. DOI: 10.3778/j.issn.1002-8331.1903-0184. [12] LI C Y, ZHANG Y S. A personalized recommendation algorithm based on large-scale real micro-blog data[J]. Neural Computing and Applications, 2020, 32(1): 11245-11252. DOI: 10.1007/s00521-020-05042-y. [13] ZHANG S X, LIU W J, DENG X L, et al. Micro-blog topic recommendation based on knowledge flow and user selection[J]. Journal of Computational Science, 2018, 26(5): 512-521. DOI: 10.1016/j.jocs.2017.10.021. [14] KIM Y, SHIM K. Twitobi: A recommendation system for twitter using probabilistic modeling[C] //The 11th IEEE International Conference on Data Mining, IEEE, 2011: 340-349. DOI: 10.1109/ICDM.2011.150. [15] 刘宇东,孙豪,蒋运承.融合内容相似度与多特征计算的个性化微博推荐模型[J].计算机科学, 2020, 47(10): 97-101. DOI: 10.11896/jsjkx.190700073. [16] 陈杰,刘学军,李斌,等.一种基于用户动态兴趣和社交网络的微博推荐方法[J]. 电子学报, 2017, 45(4): 898-905. DOI: 10.3969/j.issn.0372-2112.2017.04.019. [17] 韩康康,徐建民,张彬.融合用户兴趣和多维信任度的微博推荐[J].数据分析与知识发现, 2020, 4(12): 95-104. DOI: 10.11925/infotech.2096-3467.2020.0049. [18] 赵森栋,刘挺.因果关系及其在社会媒体上的应用研究综述[J].软件学报, 2014, 25(12): 2733-2752. DOI: 10.13328/j.cnki.jos.004724. [19] 徐建民.基于术语关系的贝叶斯网络检索模型扩展[M].北京: 科学出版社, 2019: 80-83. [20] PAN H L, YANG X H. Intelligent recommendation method integrating knowledge graph and Bayesian network[J]. Soft Computing, 2021: 1-10. DOI: 10.1007/s00500-021-05735-z. [21] HUANG J J, ZHU K L, ZHONG N. A probabilistic inference model for recommender systems[J]. Applied Intelligence, 2016, 45(3): 686-694. DOI: 10.1007/s10489-016-0783-1. [22] CALADO P, RIBEIRO-NETO B, ZIVIANI N, et al. Local versus global link information in the Web[J]. ACM Transactions on Information Systems, 2003, 21(1): 42-63. DOI: 10.1145/635484.635486. [23] 石磊,陶永才,李俊艳,等.个性化微博实时推荐模型研究[J].小型微型计算机系统, 2016, 37(9): 1910-1914. DOI: CNKI:SUN:XXWX.0.2016-09-004. [24] 印鉴,王智圣,李琪,等.基于大规模隐式反馈的个性化推荐[J].软件学报, 2014, 25(9): 1953-1966. DOI: 10.13328/j.cnki.jos.004648. [25] CRISTO M A P D, CALADO P P, SILVEIRA M D L D, et al. Bayesian belief networks for IR[J]. International Journal of Approximate Reasoning, 2003, 34(2-3): 163-179. DOI: 10.1016/j.ijar.2003.07.006. [26] 朱郁筱,吕琳媛.推荐系统评价指标综述[J].电子科技大学学报, 2012, 41(2): 163-175. DOI: 10.3969/j.issn.1001-0548.2012.02.001. [27] LANDIS J R, KOCH G G. The measurement of observer agreement for categorical data[J]. Biometrics, 1977, 33(3): 159-174. DOI: 10.2307/2529310. ( |