河北大学学报(自然科学版) ›› 2022, Vol. 42 ›› Issue (4): 438-448.DOI: 10.3969/j.issn.1000-1565.2022.04.015

• • 上一篇    

一个基于信念网络的微博推荐模型

赵凯华,徐建民,鲍彩倩   

  • 收稿日期:2021-11-14 出版日期:2022-07-25 发布日期:2022-09-14
  • 通讯作者: 徐建民(1966—)
  • 作者简介:赵凯华(1994—),女,河北邢台人,河北大学在读硕士研究生,主要从事在线社交网络方向研究.
    E-mail:2071506872@qq.com
  • 基金资助:
    河北省社科基金资助项目(HB20TQ002)

A belief network model for microblog recommendation

ZHAO Kaihua, XU Jianmin, BAO Caiqian   

  1. School of Cyberspace Security and Computer, Hebei University, Baoding 071002, China
  • Received:2021-11-14 Online:2022-07-25 Published:2022-09-14

摘要: 针对现有微博推荐方法或模型不便组合证据的不足,提出一种微博推荐新方法.将信念网络用于微博推荐,构建一个基本信念网络推荐模型,并在基本模型中融合用户交互微博证据,提出一个微博推荐扩展模型.模型中的节点表示微博、用户和兴趣特征词,有向弧表示节点之间的关系,通过计算用户与微博的覆盖程度来得到用户与待评估微博的相关度.在微博数据集上的实验结果表明:扩展模型较基本模型在F值上至少提高了约4.9%;与已有的推荐方法相比,新模型在组合证据提高推荐性能方面更有效.

关键词: 微博推荐, 信念网络, 组合证据, 交互微博

Abstract: Considering that the existing microblog recommendation methods or models are inconvenient to combine evidence, this paper proposes a new microblog recommendation method. The belief network is applied to microblog recommendation, a basic belief network recommendation model is then constructed, and an extended microblog recommendation model is proposed by integrating the user interaction microblog evidence into the basic model. The nodes in the model represent microblogs, users and interest feature words, while the directed arcs represent relationships between nodes. The relevance between user and microblog is obtained by calculating the degree of coverage between user and microblog. The experimental results on microblog datasets show that the F-measure of the extended model is at least 4.9% higher than that of the basic model. Compared with existing recommendation methods, the new model is more effective in improving recommendation performance in terms of combining evidence.

Key words: microblog recommendation, belief network, combining evidence, interaction microblog

中图分类号: