[1] 陈文,孙洪广,李西成, 等.力学与工程问题的分数阶导数建模[M].北京:科学出版社, 2010. [2] 薛定宇.分数阶微积分学与分数阶控制[M].北京:科学出版社, 2018. [3] SANDEV T, TOMOVSKI Zˇ. Fractional equations and models[M]. Cham: Springer International Publishing, 2019. DOI:10.1007/978-3-030-29614-8. [4] SRIVASTAVA V, RAI K N. A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues[J]. Math Comput Model, 2010, 51(5/6): 616-624. DOI:10.1016/j.mcm.2009.11.002. [5] MAINARDI F. The fundamental solutions for the fractional diffusion-wave equation[J]. Appl Math Lett, 1996, 9(6): 23-28. DOI:10.1016/0893-9659(96)00089-4. [6] LUCHKO Y, MAINARDI F. Some properties of the fundamental solution to the signalling problem for the fractional diffusion-wave equation[J]. Cent Eur J Phys, 2013, 11(6): 666-675. DOI:10.2478/s11534-013-0247-8. [7] 刘发旺,庄平辉,刘青霞.分数阶偏微分方程数值方法及其应用[M].北京:科学出版社, 2015. [8] ARSHAD S, HUANG J F, KHALIQ A Q M, et al. Trapezoidal scheme for time-space fractional diffusion equation with Riesz derivative[J]. J Comput Phys, 2017, 350: 1-15. DOI:10.1016/j.jcp.2017.08.038. [9] GAO G H, ALIKHANOV A A, SUN Z Z. The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations[J]. J Sci Comput, 2017, 73(1), 93-121. DOI: 10.1007/s10915-017-0407-x. [10] KHARAZMI E, ZAYERNOURI M. Fractional pseudo-spectral methods for distributed-order fractional PDEs[J]. Int J Comput Math, 2018, 95(6/7): 1340-1361. DOI:10.1080/00207160.2017.1421949. [11] KAZMI K, KHALIQ A Q M. An efficient split-step method for distributed-order space-fractional reaction-diffusion equations with time-dependent boundary conditions[J]. Appl Numer Math, 2020, 147: 142-160. DOI:10.1016/j.apnum.2019.08. 019. [12] HUANG J F, ZHANG J N, ARSHAD S, et al. A superlinear convergence scheme for the multi-term and distribution-order fractional wave equation with initial singularity[J]. Numer Methods Partial Differential Eq, 2021, 37(4): 2833-2848. DOI:10.1002/num.22773. [13] JAFARI H, DEHGHAN M, SAYEVAND K. Solving a fourth-order fractional diffusion-wave equation in a bounded domain by decomposition method[J]. Numer Methods Partial Differential Eq, 2008, 24(4): 1115-1126. DOI:10.1002/num.20308. [14] HU X L, ZHANG L M. On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems[J]. Appl Math Comput, 2012, 218(9): 5019-5034. DOI:10.1016/j.amc.2011.10.069. [15] LI X H, WONG P J Y. A non-polynomial numerical scheme for fourth-order fractional diffusion-wave model[J]. Appl Math Comput, 2018, 331: 80-95. DOI:10.1016/j.amc.2018.02.044. [16] GAO G H, LIU R. A compact difference scheme for fourth-order temporal multi-term fractional wave equations and maximum error estimates[J]. East Asian J Appl Math, 2019, 9(4): 703-722. DOI: 10.4208/eajam.171118.060119. [17] 刘新龙,杨晓忠.时间分数阶四阶扩散方程的显-隐和隐-显差分格式[J].数值计算与计算机应用, 2020, 41(3): 216-231. DOI: 10.12288/szjs.2020.3.216. [18] ELMAHDI E G M, HUANG J F. Two linearized finite difference schemes for time fractional nonlinear diffusion-wave equations with fourth order derivative[J]. AIMS Math, 2021, 6(6): 6356-6376. DOI: 10.3934/math.2021373. [19] 胡秀玲,张鲁明.空间四阶-时间分数阶扩散波方程的一个新的数值分析方法[J].应用数学学报, 2017, 40(4): 543-561. DOI:10.12387/C2017046. [20] RAN M H, ZHANG C J. New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order[J]. Appl Numer Math, 2018, 129: 58-70. DOI:10.1016/j.apnum.2018.03.005. [21] CUI M R. Compact difference scheme for time-fractional fourth-order equation with first Dirichlet boundary condition[J]. East Asian J Appl Math, 2019, 9(1): 45-66. DOI:10.4208/eajam.260318.220618. [22] HE H Y, LIANG K J, YIN B L. A numerical method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation[J]. Int J Model Simul Sci Comput, 2019, 10(1): 1941005. DOI:10.1142/S1793962319410058. [23] REN J C, SUN Z Z. Efficient numerical solution of the multi-term time fractional diffusion-wave equation[J]. East Asian J Appl Math, 2015, 5(1): 1-28. DOI:10.4208/eajam.080714.031114a. [24] ZHENG M, LIU F, ANH V, et al. A high-order spectral method for the multi-term time-fractional diffusion equations[J]. Appl Math Model, 2016, 40(7/8): 4970-4985. DOI:10.1016/j.apm.2015.12.011. [25] ABDEL-REHIM E A, EL-SAYED A M A, HASHEM A S. Simulation of the approximate solutions of the time-fractional multi-term wave equations[J]. Comput Math Appl, 2017, 73(6): 1134-1154. DOI:10.1016/j.camwa.2016.06.019. [26] CHEN H, LÜ S J, CHEN W P. A unified numerical scheme for the multi-term time fractional diffusion and diffusion-wave equations with variable coefficients[J]. J Comput Appl Math, 2018, 330: 380-397. DOI:10.1016/j.cam.2017.09.011. [27] 王芬玲,樊明智,赵艳敏,等.多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J].计算数学, 2018, 40(3): 299-312. DOI:10.12286/jssx.2018.3.299. [28] LIU Z T, LIU F W, ZENG F H. An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations[J]. Appl Numer Math, 2019, 136: 139-151. DOI: 10.1016/j.apnum.2018.10.005. [29] HUANG J F, ZHANG J N, ARSHAD S, et al. A numerical method for two-dimensional multi-term time-space fractional nonlinear diffusion-wave equations[J]. Appl Numer Math, 2021, 159: 159-173. DOI:10.1016/j.apnum.2020.09.003. [30] HUANG J F, YANG D D, JAY L O. Efficient methods for nonlinear time fractional diffusion-wave equations and their fast implementations[J]. Numer Algorithms, 2020, 85(2):: 375-397. DOI:10.1007/s11075-019-00817-4. [31] JIANG S D, ZHANG J W, ZHANG Q, et al. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations[J]. Commun Comput Phys, 2017, 21(3): 650-678. DOI:10.4208/cicp.OA-2016-0136. ( |