河北大学学报(自然科学版) ›› 2023, Vol. 43 ›› Issue (2): 188-196.DOI: 10.3969/j.issn.1000-1565.2023.02.011
赵建喜1,庞静文2,田翔2,闫星寒3,张秩铭3, 赵占娟3
收稿日期:
2022-06-07
出版日期:
2023-03-25
发布日期:
2023-04-06
通讯作者:
赵占娟(1974—)
作者简介:
赵建喜(1966—),男,河北保定人,河北大学附属医院主任医师,主要从事放射医学研究.基金资助:
ZHAO Jianxi1, PANG Jingwen2, TIAN Xiang2, YAN Xinghan3, ZHANG Zhiming3, ZHAO Zhanjuan3
Received:
2022-06-07
Online:
2023-03-25
Published:
2023-04-06
摘要: 糖尿病足是糖尿病导致的与其他外伤因素等无关的足部组织破坏,在临床上属于慢性伤口,常合并缺血、周围神经病变以及感染,其愈合受损增加了感染的可能,因此在糖尿病足的治疗过程中,抗感染治疗是关键.目前临床上多使用抗生素进行抗感染治疗,但糖尿病足的病理生理变化阻碍了抗生素在溃疡中的渗透,使其难以到达病变部位,同时,由于抗生素多重耐药现象逐渐严峻,也增加了糖尿病足的治疗难度.光动力疗法以其靶向性好、副作用低、对微生物无耐药性等优点给糖尿病足的医治提供了新的选择.近年来,光动力疗法在治疗糖尿病足方面取得了不错的进展.因此,本文对光动力疗法在糖尿病足中的应用、治疗机制、近期的研究成果等方面进行阐述.
中图分类号:
赵建喜,庞静文,田翔,闫星寒,张秩铭, 赵占娟. 光动力疗法在糖尿病足治疗中的应用及机制[J]. 河北大学学报(自然科学版), 2023, 43(2): 188-196.
ZHAO Jianxi, PANG Jingwen, TIAN Xiang, YAN Xinghan, ZHANG Zhiming, ZHAO Zhanjuan. Application and mechanism of photodynamic therapy in the treatment of diabetic foot[J]. Journal of Hebei University(Natural Science Edition), 2023, 43(2): 188-196.
[1] BANDYK D F. The diabetic foot: Pathophysiology, evaluation, and treatment[J]. Semin Vasc Surg, 2018, 31(2/3/4): 43-48. DOI:10.1053/j.semvascsurg.2019.02.001. [2] LI Y, GUO C, CAO Y. Secular incidence trends and effect of population aging on mortality due to type 1 and type 2 diabetes mellitus in China from 1990 to 2019: findings from the Global Burden of Disease Study 2019[J]. BMJ Open Diabetes Res Care, 2021, 9(2): e002529. DOI:10.1136/bmjdrc-2021-002529. [3] WANG L, PENG W, ZHAO Z, et al. Prevalence and treatment of diabetes in China, 2013—2018[J]. JAMA, 2021, 326(24): 2498-2506. DOI:10.1001/jama.2021.22208. [4] SALTOGLU N, ERGONUL O, TULEK N. Influence of multidrug resistant organisms on the outcome of diabetic foot infection[J]. Int J Infect Dis, 2018, 70: 10-14. DOI:10.1016/j.ijid.2018.02.013. [5] 姜玉峰,付小兵,陆树良,等.中国人群体表慢性难愈合创面病原微生物学特征分析[J]. 感染、炎症、修复, 2011, 12(3): 134-138. DOI:10.3969/j.issn.1672-8521.2011.03.003. [6] 中华医学会糖尿病学分会,中华医学会感染病学分会,中华医学会组织修复与再生分会.中国糖尿病足防治指南(2019版)(Ⅲ)[J].中华糖尿病杂志,2019,11(4): 238-247. DOI:10.3760/cma.j.issn.1674-5809.2019.04.004. [7] 李燕美.糖尿病足溃疡处病原菌分布情况及耐药性分析[J].黑龙江医学, 2019, 43(2): 140-141. DOI:10.3969/j.issn.1004-5775.2019.02.18. [8] 郭婕,王鹏华,褚月颉,等.不同深度糖尿病足感染患者的临床表现、病原菌特点及耐药性研究[J].中国全科医学, 2012, 15(34): 4012-4015. DOI:10.3969/j.issn.1007-9572.2012.34.027. [9] LI M Q. Guidelines and standards for comprehensive clinical diagnosis and interventional treatment for diabetic foot in China(Issue 7.0)[J]. J Interv Med, 2021, 4(3): 117-129. DOI:10.1016/j.jimed.2021.07.003. [10] 余海洋,叶新华,苏丹,等.糖尿病足感染发病机制及抗感染治疗的研究进展[J]. 感染、炎症、修复, 2021, 22(3): 175-178. [11] LIPSKY B A, BERENDT A R, CORNIA P B, et al. 2012 infectious diseases society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections[J]. Clin Infect Dis, 2012, 54(12): e132-e173. DOI:10.1093/cid/cis346. [12] HARTEMANN-HEURTIER A, ROBERT J, JACQUEMINET S, et al. Diabetic foot ulcer and multidrug-resistant organisms: risk factors and impact[J]. Diabet Med, 2004, 21(7): 710-715. DOI:10.1111/j.1464-5491.2004.01237.x. [13] POUGET C, DUNYACH-REMY C, PANTEL A, et al. Biofilms in diabetic foot ulcers: significance and clinical relevance[J]. Microorganisms, 2020, 8(10): E1580. DOI:10.3390/microorganisms8101580. [14] NOOR S, BORSE G A, OZAIR M. Inflammatory markers as risk factors for infection with multidrug-resistant microbes in diabetic foot subjects[J]. Foot, 2017, 32: 44-48. DOI:10.1016/j.foot.2017.05.001. [15] GOMPELMAN M, VAN ASTEN S A V, PETERS E J G. Update on the role of infection and biofilms in wound healing pathophysiology and treatment[J]. Plast Reconstr Surg, 2016, 138(Suppl.3): 61S-70S. DOI:10.1097/prs.0000000000002679. [16] PERCIVAL S L, HILL K E, WILLIAMS D W, et al. A review of the scientific evidence for biofilms in wounds[J]. Wound Repair Regen, 2012, 20(5): 647-657. DOI:10.1111/j.1524-475X.2012.00836.x. [17] PUGAZHENDHI S, DORAIRAJ A P. Appraisal of biofilm formation in diabetic foot infections by comparing phenotypic methods with the ultrastructural analysis[J]. J Foot Ankle Surg, 2018, 57(2): 309-315. DOI:10.1053/j.jfas.2017.10.010. [18] HSU C Y, SHU J C, LIN M H, et al. High glucose concentration promotes vancomycin-enhanced biofilm formation of vancomycin-non-susceptible Staphylococcus aureus in diabetic mice[J]. PLoS One, 2015, 10(8): e0134852. DOI:10.1371/journal.pone.0134852. [19] MALIK A. The diabetic foot infections: Biofilms and antimicrobial resistance[J]. Diabetes Metab Syndr Clin Res Rev, 2013, 7(2): 101-107. DOI:10.1016/j.dsx.2013.02.006. [20] ZHAO G, USUI M L, UNDERWOOD R A, et al. Time course study of delayed wound healing in a biofilm-challenged diabetic mouse model[J]. Wound Repair Regen, 2012, 20(3): 342-352. DOI:10.1111/j.1524-475X.2012.00793.x. [21] MOTTOLA C, SEMEDO-LEMSADDEK T, MENDES J J, et al. Molecular typing, virulence traits and antimicrobial resistance of diabetic foot staphylococci[J]. J Biomed Sci, 2016, 23:33. DOI:10.1186/s12929-016-0250-7. [22] 李文惠,柳国斌.国际糖尿病足研究知识图谱: 基于CiteSpace的文献可视化分析[J]. 中国组织工程研究, 2021, 25(20): 3178-3184. [23] CERCA N, JEFFERSON K K, OLIVEIRA R, et al. Comparative antibody-mediated phagocytosis of Staphylococcus epidermidis cells grown in a biofilm or in the planktonic state[J]. Infect Immun, 2006, 74(8): 4849-4855. DOI:10.1128/iai.00230-06. [24] VERA D M A, HAYNES M H, BALL A R, et al. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes[J]. Photochem Photobiol, 2012, 88(3): 499-511. DOI:10.1111/j.1751-1097.2012.01087.x. [25] MAISCH T. Resistance in antimicrobial photodynamic inactivation of bacteria[J]. Photochem Photobiol Sci, 2015, 14(8): 1518-1526. DOI:10.1039/c5pp00037h. [26] KEYAL U. Photodynamic therapy for the treatment of different severity of acne: a systematic review[J]. Photodiagnosis Photodyn Ther, 2016, 14: 191-199. DOI:10.1016/j.pdpdt.2016.04.005. [27] CARO H. Improvement in the production of dye-stuffs from methyl-aniline[J]. US patent. 1878(204): 796. [28] FELGENTRÄGER A, MAISCH T, DOBLER D, et al. Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: photophysics and antimicrobial efficiency[J]. Biomed Res Int, 2013, 2013: 482167. DOI:10.1155/2013/482167. [29] PUMMER A, KNÜTTEL H, HILLER K A, et al. Antimicrobial efficacy of irradiation with visible light on oral bacteria in vitro: a systematic review[J]. Future Med Chem, 2017, 9(13): 1557-1574. DOI:10.4155/fmc-2017-0051. [30] COLLINS T L, MARKUS E A, HASSETT D J, et al. The effect of a cationic porphyrin on pseudomonas aeruginosa biofilms[J]. Curr Microbiol, 2010, 61(5): 411-416. DOI:10.1007/s00284-010-9629-y. [31] GOULART RDE C, BOLEAN M, PAULINO TDE P, et al. Photodynamic therapy in planktonic and biofilm cultures of Aggregatibacter actinomycetemcomitans[J]. Photomed Laser Surg, 2010, 28(Suppl 1): S53-S60. DOI:10.1089/pho.2009.2591. [32] MIZUNO K, ZHIYENTAYEV T, HUANG L, et al. Antimicrobial photodynamic therapy with functionalized fullerenes: quantitative structure-activity relationships[J]. J Nanomed Nanotechnol, 2011, 2(2): 1-9. DOI:10.4172/2157-7439.1000109. [33] MONAMI M, SCATENA A, SCHLECHT M, et al. Antimicrobial photodynamic therapy in infected diabetic foot ulcers: a multicenter preliminary experience[J]. J Am Podiatr Med Assoc, 2020, 110(1): Article5. DOI:10.7547/18-069. [34] CARRINHO P M, ANDREANI D I K, MORETE V A, et al. A study on the macroscopic morphometry of the lesion area on diabetic ulcers in humans treated with photodynamic therapy using two methods of measurement[J]. Photomed Laser Surg, 2018, 36(1): 44-50. DOI:10.1089/pho.2017.4305. [35] HUANG J H, WU S T, WU M F. Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model[J]. Photodiagnosis Photodyn Ther, 2021, 36: 102480. DOI:10.1016/j.pdpdt.2021.102480. [36] KAMOUN E A, KENAWY E R, CHEN X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. J Adv Res, 2017, 8(3): 217-233. DOI:10.1016/j.jare.2017.01.005. [37] LIPOVSKY A, NITZAN Y, GEDANKEN A, et al. Antifungal activity of ZnO nanoparticles: the role of ROS mediated cell injury[J]. Nanotechnology, 2011, 22(10): 105101. DOI:10.1088/0957-4484/22/10/105101. [38] SHANMUGAPRIYA K,KANG H W. Engineering pharmaceutical nanocarriers for photodynamic therapy on wound healing: Review[J]. Mater Sci Eng C, 2019, 105: 110110. DOI:10.1016/j.msec.2019.110110. [39] TORCHILIN V P. Multifunctional nanocarriers[J]. Adv Drug Deliv Rev, 2012, 64: 302-315. DOI:10.1016/j.addr.2012.09.031. [40] MAZOR O, BRANDIS A, PLAKS V, et al. WST11, A novel water-soluble bacteriochlorophyll derivative; cellular uptake, pharmacokinetics, biodistribution and vascular-targeted photodynamic activity using melanoma tumors as a mode l[J]. Photochem Photobiol, 2005, 81(2): 342-351. DOI:10.1111/j.1751-1097.2005.tb00193.x. [41] NESI-REIS V. Contribution of photodynamic therapy in wound healing: a systematic review[J]. Photodiagnosis Photodyn Ther, 2018, 21: 294-305. DOI:10.1016/j.pdpdt.2017.12.015. [42] GOTO B, IRIUCHISHIMA T, HORAGUCHI T, et al. Therapeutic effect of photodynamic therapy using Na-pheophorbide a on osteomyelitis models in rats[J]. Photomed Laser Surg, 2011, 29(3): 183-189. DOI:10.1089/pho.2010.2803. [43] TARDIVO J P. A clinical trial testing the efficacy of PDT in preventing amputation in diabetic patients[J]. Photodiagnosis Photodyn Ther, 2014, 11(3): 342-350. DOI:10.1016/j.pdpdt.2014.04.007. [44] 张丽,付小兵.光学疗法治疗慢性难愈合创面的研究进展[J].感染、炎症、修复, 2015, 16(4): 251-254. DOI:10.3969/j.issn.1672-8521.2015.04.017. [45] 何海燕,张连阳,叶茂.短期红光照射治疗对创面愈合和缓解疼痛的效果观察[J].解放军医药杂志, 2013, 25(7): 20-22. DOI:10.3969/j.issn.2095-140X.2013.07.006. [46] PÉREZ M, ROBRES P, MORENO B, et al. Comparison of antibacterial activity and wound healing in a superficial abrasion mouse model of Staphylococcus aureus skin infection using photodynamic therapy based on methylene blue or mupirocin or both[J]. Front Med(Lausanne), 2021, 8: 673408. DOI:10.3389/fmed.2021.673408. [47] MOSTI G, PICERNI P, LICAU M, et al. Photodynamic therapy in infected venous and mixed leg ulcers: a pilot experience[J]. J Wound Care, 2018, 27(12): 816-821. DOI:10.12968/jowc.2018.27.12.816. [48] 李卉,张平.高能窄谱红光治疗下肢溃疡临床疗效观察[J].当代医学, 2013, 19(19): 72-72,73. DOI:10.3969/j.issn.1009-4393.2013.19.049. [49] OROPALLO A R, SERENA T E, ARMSTRONG D G, et al. Molecular biomarkers of oxygen therapy in patients with diabetic foot ulcers[J]. Biomolecules, 2021, 11(7): 925. DOI:10.3390/biom11070925. [50] SEN C K. Wound healing essentials: let there be oxygen[J]. Wound Repair Regen, 2009, 17(1): 1-18. DOI:10.1111/j.1524-475X.2008.00436.x. [51] LAVERY L A, KILLEEN A L, FARRAR D, et al. The effect of continuous diffusion of oxygen treatment on cytokines, perfusion, bacterial load, and healing in patients with diabetic foot ulcers[J]. Int Wound J, 2020, 17(6): 1986-1995. DOI:10.1111/iwj.13490. [52] LI X M. Synergistic in vitro effects of indocyanine green and ethylenediamine tetraacetate-mediated antimicrobial photodynamic therapy combined with antibiotics for resistant bacterial biofilms in diabetic foot infection[J]. Photodiagnosis Photodyn Ther, 2019, 25: 300-308. DOI:10.1016/j.pdpdt.2019.01.010. [53] HUANG J H. Effectiveness of a single treatment of photodynamic therapy using topical administration of 5-aminolevulinic acid on methicillin-resistant Staphylococcus aureus-infected wounds of diabetic mice[J]. Photodiagnosis Photodyn Ther, 2020, 30: 101748. DOI:10.1016/j.pdpdt.2020.101748. [54] ARAU'JO T S D. Reduced methicillin-resistant Staphylococcus aureus biofilm formation in bone cavities by photodynamic therapy[J]. Photodiagnosis Photodyn Ther, 2018, 21: 219-223. DOI:10.1016/j.pdpdt.2017.12.011. [55] 林楚佳,郭佩湘,林嘉慧,等.糖尿病足患者临床特点及皮肤组织学结构改变[J]. 中国医学创新, 2017, 14(2): 53-57. DOI:10.3969/j.issn.1674-4985.2017.02.014. [56] BYUN J Y, LEE G Y, CHOI H Y, et al. The expressions of TGF-β(1)and IL-10 in cultured fibroblasts after ALA-IPL photodynamic treatment[J]. Ann Dermatol, 2011, 23(1): 19-22. DOI:10.5021/ad.2011.23.1.19. [57] BRACKETT C M, GOLLNICK S O. Photodynamic therapy enhancement of anti-tumor immunity[J]. Photochem Photobiol Sci, 2011, 10(5): 649-652. DOI:10.1039/c0pp00354a. [58] GOLLNICK S O, OWCZARCZAK B, MAIER P. Photodynamic therapy and anti-tumor immunity[J]. Lasers Surg Med, 2006, 38(5): 509-515. DOI:10.1002/lsm.20362. [59] TARDIVO J P, BAPTISTA M S. Treatment of osteomyelitis in the feet of diabetic patients by photodynamic antimicrobial chemotherapy[J]. Photomed Laser Surg, 2009, 27(1): 145-150. DOI:10.1089/pho.2008.2252. [60] KRUPKA M, BOZ ·EK A, BARTUSIK-AEBISHER D, et al. Photodynamic therapy for the treatment of infected leg ulcers-A pilot study[J]. Antibiotics(Basel), 2021, 10(5): 506. DOI:10.3390/antibiotics10050506. [61] CESAR G B, WINYK A P, SANTOS F S. Treatment of chronic wounds with methylene blue photodynamic therapy: a case report[J]. Photodiagnosis Photodyn Ther, 2022, 39:103016. DOI:10.1016/j.pdpdt.2022.103016. [62] LI X Y, KOU H L, ZHAO C Q. Efficacy and safety of ALA-PDT in treatment of diabetic foot ulcer with infection[J]. Photodiagnosis Photodyn Ther, 2022, 38: 102822. DOI:10.1016/j.pdpdt.2022.102822. [63] ARENBERGEROVA M, ARENBERGER P, BEDNAR M, et al. Light-activated nanofibre textiles exert antibacterial effects in the setting of chronic wound healing[J]. Exp Dermatol, 2012, 21(8): 619-624. DOI:10.1111/j.1600-0625.2012.01536.x. [64] MORLEY S, GRIFFITHS J, PHILIPS G, et al. Phase IIa randomized, placebo-controlled study of antimicrobial photodynamic therapy in bacterially colonized, chronic leg ulcers and diabetic foot ulcers: a new approach to antimicrobial therapy[J]. Br J Dermatol, 2013, 168(3): 617-624. DOI:10.1111/bjd.12098. [65] OKIZAKI S I. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice[J]. Biomed Pharmacother, 2015, 70: 317-325. DOI:10.1016/j.biopha.2014.10.020. [66] ALAVI A. Diabetic foot ulcers: part I. Pathophysiology and prevention[J]. J Am Acad Dermatol, 2014, 70(1): 1.e1-1.e18. DOI:10.1016/j.jaad.2013.06.055. [67] PATEL S, SRIVASTAVA S, SINGH M R. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing[J]. Biomed Pharmacother, 2019, 112: 108615. DOI:10.1016/j.biopha.2019.108615. [68] RASK-MADSEN C, KING G. Vascular complications of diabetes: mechanisms of injury and protective factors[J]. Cell Metab, 2013, 17(1): 20-33. DOI:10.1016/j.cmet.2012.11.012. [69] 林楚佳,蓝尤冕,欧妙琼,等.糖尿病足患者皮肤微循环结构及HIF-1α、VEGF表达水平的改变[J].皮肤病与性病, 2021, 43(2): 164-166. DOI:10.3969/j.issn.1002-1310.2021.02.003. [70] 郭晶,徐强,张朝晖.基于血管内皮生长因子(VEGF)相关调控途径探讨糖尿病足中医药治疗研究进展[J].辽宁中医药大学学报, 2021, 23(9): 61-65. DOI:10.13194/j.issn.1673-842x.2021.09.013. [71] BIGAGLI E, LODOVICI M. Circulating oxidative stress biomarkers in clinical studies on type 2 diabetes and its complications[J]. Oxid Med Cell Longev, 2019, 2019: 5953685. DOI:10.1155/2019/5953685. [72] KLOTZ L O, KRÖNCKE K D, SIES H. Singlet oxygen-induced signaling effects in mammalian cells[J]. Photochem. Photobiol Sci, 2003, 2(2): 88-94. DOI:10.1039/b210750c. [73] SEN C K, ROY S. Redox signals in wound healing[J]. Biochim Biophys Acta BBA Gen Subj, 2008, 1780(11): 1348-1361. DOI:10.1016/j.bbagen.2008.01.006. [74] CHO M, HUNT T K, HUSSAIN M Z. Hydrogen peroxide stimulates macrophage vascular endothelial growth factor release[J]. Am J Physiol Heart Circ Physiol, 2001, 280(5): H2357-H2363. DOI:10.1152/ajpheart.2001.280.5.h2357. [75] TRUJILLO V. Calcitriol promotes proangiogenic molecules in keratinocytes in a diabetic foot ulcer model[J]. J Steroid Biochem Mol Biol, 2017, 174: 303-311. DOI:10.1016/j.jsbmb.2017.10.013. [76] GARCIA V G, DE LIMA M A, OKAMOTO T, et al. Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: histological study in rats[J]. Lasers Med Sci, 2010, 25(2): 221-228. DOI:10.1007/s10103-009-0694-z. [77] MROZ P, HAMBLIN M R. The immunosuppressive side of PDT[J]. Photochem Photobiol Sci, 2011, 10(5): 751-758. DOI:10.1039/c0pp00345j. [78] BANERJEE S M. Photodynamic therapy: inception to application in breast cancer[J]. Breast, 2017, 31: 105-113. DOI:10.1016/j.breast.2016.09.016. [79] SPRING B Q, RIZVI I, XU N, et al. The role of photodynamic therapy in overcoming cancer drug resistance[J]. Photochem Photobiol Sci, 2015, 14(8): 1476-1491. DOI:10.1039/c4pp00495g. [80] ANG J M. Photodynamic therapy and pain: a systematic review[J]. Photodiagnosis photodyn Ther, 2017, 19: 308-344. DOI:10.1016/j.pdpdt.2017.07.002. ( |
[1] | 赵建喜,尹秀娟,方子源,杜梓硕,朱林,赵占娟. 光动力抗菌治疗骨髓炎的研究进展[J]. 河北大学学报(自然科学版), 2022, 42(2): 199-207. |
[2] | 赵占娟,马莹莹,刘亚萌,杨焱惜,商亚贞,赵建喜. 光敏剂T1的光动力抗菌与抗肿瘤活性[J]. 河北大学学报(自然科学版), 2019, 39(5): 522-528. |
[3] | 赵占娟,耿文一,樊紫瑜,洪阁,刘天军. 新型水溶性卟啉类光敏剂的体外抗菌作用[J]. 河北大学学报(自然科学版), 2017, 37(4): 393-399. |
[4] | 葛伟颖,赵占娟,洪阁,赵建喜. 半乳糖酞菁光动力治疗结肠癌的实验研究[J]. 河北大学学报(自然科学版), 2017, 37(2): 180-186. |
[5] | 赵占娟,李世杰,徐泽华,商亚贞,赵建喜. 光动力治疗耐药细菌的研究进展[J]. 河北大学学报(自然科学版), 2015, 35(6): 657-666. |
[6] | 刘金禄,王蕾,李采青. 铜绿假单胞菌随机扩增DNA多态性基因分型研究[J]. 河北大学学报(自然科学版), 2006, 26(1): 104-107. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||