[1] FAN L W, ZHANG F, FAN H, et al. Brief review of image denoising techniques[J]. Vis Comput Ind Biomed Art, 2019, 2(1): 7. DOI: 10.1186/s42492-019-0016-7. [2] ANCHAL A, BUDHIRAJA S, GOYAL B, et al. An efficient image denoising scheme for higher noise levels using spatial domain filters[J]. Biomed Pharmacol J, 2018, 11(2): 625-634. DOI: 10.13005/bpj/1415. [3] YUAN Q Q, ZHANG Q, LI J, et al. Hyperspectral image denoising employing a spatial–spectral deep residual convolutional neural network[J]. IEEE Trans Geosci Remote Sens, 2019, 57(2): 1205-1218. DOI: 10.1109/TGRS.2018.2865197. [4] MITICHE L, HOUDA ADAMOU-MITICHE A B, NAIMI H. Medical image denoising using dual tree complex thresholding wavelet transform[C] //2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies(AEECT), Amman, Jordan, 2014: 1-5. DOI: 10.1109/AEECT.2013.6716477. [5] MAGGIONI M, KATKOVNIK V, EGIAZARIAN K, et al. Nonlocal transform-domain filter for volumetric data denoising and reconstruction[J]. IEEE Trans Image Process, 2013, 22(1): 119-133. DOI: 10.1109/TIP.2012.2210725. [6] BUADES A, COLL B, MOREL J M. Non-local means denoising[J]. Image Process Line, 2011, 1: 208-212. DOI: 10.5201/ipol.2011.bcm_nlm. [7] CHEN R, LIU X M, ZHAI D M, et al. Depth image denoising via collaborative graph Fourier transform[M] //Communications in Computer and Information Science, Singapore: Springer Singapore, 2018: 128-137. DOI: 10.1007/978-981-10-8108-8_12. [8] MIRI A, SHARIFIAN S, RASHIDI S, et al. Medical image denoising based on 2D discrete cosine transform via ant colony optimization[J]. Optik, 2018, 156: 938-948. DOI: 10.1016/j.ijleo.2017.12.074. [9] CHEN H, XU W L, BRODERICK N, et al. An adaptive denoising method for Raman spectroscopy based on lifting wavelet transform[J]. J Raman Spectrosc, 2018, 49(9): 1529-1539. DOI: 10.1002/jrs.5399. [10] GU S H, ZHANG L, ZUO W M, et al. Weighted nuclear norm minimization with application to image denoising[C] //2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, OH, USA, 2014: 2862-2869. DOI: 10.1109/CVPR.2014.366. [11] DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Trans Image Process, 2007, 16(8): 2080-2095. DOI: 10.1109/TIP.2007.901238. [12] KNAUS C, ZWICKER M. Progressive image denoising[J]. IEEE Trans Image Process, 2014, 23(7): 3114-3125. DOI: 10.1109/TIP.2014.2326771. [13] ELHOSENY M, SHANKAR K. Optimal bilateral filter and Convolutional Neural Network based denoising method of medical image measurements[J]. Measurement, 2019, 143: 125-135. DOI: 10.1016/j.measurement.2019.04.072. [14] WANG X B, HUANG G M, ZHOU Z W, et al. Radar emitter recognition based on the energy cumulant of short time Fourier transform and reinforced deep belief network[J]. Sensors(Basel), 2018, 18(9): 3103. DOI: 10.3390/s18093103. [15] BAO L, YANG Z L, WANG S Q, et al. Real image denoising based on multi-scale residual dense block and cascaded U-net with block-connection[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Seattle, WA, USA, 2020: 1823-1831. DOI: 10.1109/CVPRW50498.2020.00232. [16] FALK T, MAI D, BENSCH R, et al. U-Net: deep learning for cell counting, detection, and morphometry[J]. Nat Methods, 2019, 16(1): 67-70. DOI: 10.1038/s41592-018-0261-2. [17] DIVAKAR N, BABU R V. Image denoising via CNNs: An Adversarial Approach[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). Honolulu, HI, USA, 2017: 1076-1083. DOI: 10.1109/CVPRW.2017.145. [18] ZHONG Y, LIU L Z, ZHAO D, et al. A generative adversarial network for image denoising[J]. Multimed Tools Appl, 2020, 79(23): 16517-16529. DOI: 10.1007/s11042-019-7556-x. [19] SINGH G, MITTAL A, AGGARWAL N. ResDNN: deep residual learning for natural image denoising[J]. IET Image Process, 2020, 14(11): 2425-2434. DOI: 10.1049/iet-ipr.2019.0623. [20] ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising[J]. IEEE Trans Image Process, 2017, 26(7): 3142-3155. DOI: 10.1109/TIP.2017.2662206. [21] LAN R S, ZOU H Z, PANG C, et al. Image denoising via deep residual convolutional neural networks[J]. SIViP, 2021, 15(1): 1-8. DOI: 10.1007/s11760-019-01537-x. [22] JHA N K, SAINI R, NAG S, et al. E2GC: energy-efficient group convolution in deep neural networks[C] //2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded Systems(VLSID), Bangalore, India, 2020: 155-160. DOI: 10.1109/VLSID49098.2020.00044. ( |