[1] SIEGEL R L, MILLER K D, FUCHS H E, et al. Cancer statistics, 2021[J]. CA: A Cancer J Clin, 2021, 71(1):7-33. DOI:10.3322/caac.21654. [2] NAJMI VARZANEH F, PANDEY A, ALIYARI GHASABEH M, et al. Prediction of post-TACE necrosis of hepatocellular carcinoma using volumetric enhancement on MRI and volumetric oil deposition on CT, with pathological correlation[J]. Eur Radiol, 2018, 28(7): 3032-3040. DOI:10.1007/s00330-017-5198-9. [3] LITJENS G, KOOI T, BEJNORDI B E, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42: 60-88. DOI:10.1016/j.media.2017.07.005. [4] MASSION P P, ANTIC S, ATHER S, et al. Assessing the accuracy of a deep learning method to risk stratify indeterminate pulmonary nodules[J]. Am J Respir Crit Care Med, 2020, 202(2): 241-249. DOI:10.1164/rccm.201903-0505oc. [5] LI X, JIANG Y C, LI M L, et al. Lightweight attention convolutional neural network for retinal vessel image segmentation[J]. IEEE Trans Ind Informatics, 2021, 17(3): 1958-1967. DOI:10.1109/TII.2020.2993842. [6] KUMAR A, UPADHYAY N, GHOSAL P, et al. CSNet: a new DeepNet framework for ischemic stroke lesion segmentation[J]. Comput Methods Programs Biomed, 2020, 193: 105524. DOI:10.1016/j.cmpb.2020.105524. [7] DUTTA J, CHAKRABORTY D, MONDAL D. Multimodal segmentation of brain tumours in volumetric MRI scans of the brain using time-distributed U-net[C] // Comput Intell Pattern Recognit, 2020: 715-725. DOI:10.1007/978-981-13-9042-5_62. [8] BEN-COHEN A, DIAMANT I, KLANG E, et al. Fully convolutional network for liver segmentation and lesions detection[C] // Deep Learn Data Labeling Med Appl, 2016: 77-85. DOI:10.1007/978-3-319-46976-8_9. [9] YUAN Y D. Hierarchical convolutional-deconvolutional neural networks for automatic liver and tumor segmentation[EB/OL]. 2017: arXiv: 1710.04540[cs.CV]. https: //arxiv.org/abs/1710.04540. [10] TIAN J, LI C, SHI Z C, et al. A diagnostic report generator from CT volumes on liver tumor with semi-supervised attention mechanism[C] / Med Image Comput Comput Assist Interv - MICCAI 2018, 2018: 702-710. DOI:10.1007/978-3-030-00934-2_78. [11] ZHOU Z, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-net architecture for medical image segmentation[J]. Deep Learn Med Image Anal Multimodal Learn Clin Decis Support(2018), 2018, 11045: 3-11. DOI:10.1007/978-3-030-00889-5_1. [12] LI S, TSO G K F, HE K J. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation[J]. Expert Syst Appl, 2020, 145: 113131. DOI:10.1016/j.eswa.2019.113131. [13] HAN X. Automatic liver lesion segmentation using a deep convolutional neural network method[J]. arXiv preprint arXiv:1704.07239, 2017. [14] YANG H X, SHAN C F, KOLEN A F, et al. Improving catheter segmentation & localization in 3d cardiac ultrasound using direction-fused fcn[C] //2019 IEEE 16th International Symposium on Biomedical Imaging(ISBI 2019), IEEE, 2019: 1122-1126. DOI:10.1109/ISBI.2019.8759420. [15] YUN J, PARK J, YU D, et al. Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net[J]. Med Image Anal, 2019, 51: 13-20. DOI:10.1016/j.media.2018.10.006. [16] LI X M, CHEN H, QI X J, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Trans Med Imaging, 2018, 37(12): 2663-2674. DOI:10.1109/TMI.2018.2845918. [17] ISENSEE F, JÄGER P F, KOHL S A A, et al. Automated design of deep learning methods for biomedical image segmentation[J]. arXiv preprint arXiv:1904.08128, 2019. [18] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] // 2017 IEEE International Conference on Computer Vision(ICCV), IEEE, 2017: 2999-3007. DOI:10.1109/ICCV.2017.324. [19] SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[C] // Deep Learn Med Image Anal Multimodal Learn Clin Decis Support, 2017: 240-248. DOI:10.1007/978-3-319-67558-9_28. [20] WONG K C L, MORADI M, TANG H, et al. 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes[C] // Med Image Comput Comput Assist Interv - MICCAI 2018, 2018: 612-619. DOI:10.1007/978-3-030-00931-1_70. [21] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C] // Med Image Comput Comput - Assist Interv - MICCAI 2015, 2015: 234-241. DOI:10.1007/978-3-319-24574-4_28. [22] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), IEEE, 2016: 770-778. DOI:10.1109/CVPR.2016.90. [23] WANG P Q, CHEN P F, YUAN Y, et al. Understanding convolution for semantic segmentation[C] // 2018 IEEE Winter Conference on App lications of Computer Vision(WACV), IEEE, 2018: 1451-1460. DOI:10.1109/WACV.2018.00163. [24] MILLETARI F, NAVAB N, AHMADI S A. V-net: fully convolute-ional neural networks for volumetric medical image segmentation[C] // 2016 Fourth International Conference on 3D Vision(3DV), IEEE, 2016: 565-571. DOI:10.1109/3DV.2016.79. [25] ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Trans Comput Imaging, 2017, 3(1): 47-57. DOI:10.1109/TCI.2016.2644865. ( |