河北大学学报(自然科学版) ›› 2024, Vol. 44 ›› Issue (1): 27-33.DOI: 10.3969/j.issn.1000-1565.2024.01.004
刘靖楠,冉俊霞,吴凯玥,武珈存,陈俊宇,贾鹏英
收稿日期:
2022-09-23
出版日期:
2024-01-25
发布日期:
2024-03-15
通讯作者:
贾鹏英(1976—)
作者简介:
刘靖楠(1999—),女,河北大学在读硕士研究生,主要从事大气压放电斑图研究.基金资助:
LIU Jingnan, RAN Junxia, WU Kaiyue, WU Jiacun, CHEN Junyu, JIA Pengying
Received:
2022-09-23
Online:
2024-01-25
Published:
2024-03-15
摘要: 斑图是气体放电系统中规律性的结构,一般通过放电丝之间一系列复杂的相互作用形成.本文采用双气隙氩气介质阻挡放电装置,获得了有C4v对称性的暗点斑图、米字形斑图和井字形斑图.利用电学和光学手段对斑图的放电特性进行了表征,并研究了其时空相关性.结果表明,暗点斑图是由中心暗点、亮环、外围的小暗点和均匀放电区域组成.米字形斑图和井字形斑图是由中间亮点、边上亮点、对角顶点、竖线和斜线5种不同的瞬态亚晶格组成.这些研究结果对于介质阻挡放电产生的斑图的深入研究具有一定的参考价值,而且有助于理解其他领域的复杂斑图.
中图分类号:
刘靖楠,冉俊霞,吴凯玥,武珈存,陈俊宇,贾鹏英. 双气隙介质阻挡放电中3种C4v对称性的斑图及其时空相关性[J]. 河北大学学报(自然科学版), 2024, 44(1): 27-33.
LIU Jingnan, RAN Junxia, WU Kaiyue, WU Jiacun, CHEN Junyu, JIA Pengying. Three patterns with C4v symmetry formed in argon dielectric barrier discharge with double gaps and their spatiotemporal relevance[J]. Journal of Hebei University(Natural Science Edition), 2024, 44(1): 27-33.
[1] LIU D W, ZHANG Y Z, XU M Y, et al. Cold atmospheric pressure plasmas in dermatology: Sources, reactive agents, and therapeutic effects[J]. Plasma Process Polym, 2020, 17(4): 1900218. DOI: 10.1002/ppap.201900218. [2] ZHANG H, ZHANG J S, XU S D, et al. Study on the anticancer effects of a 7 μm sized helium plasma jet on micro-tumors[J]. J Phys D: Appl Phys, 2021, 54(38): 385203. DOI: 10.1088/1361-6463/ac0eb3. [3] XU H, WANG S, SHABAN M, et al. Trans-Stilbene epoxidation by He+O2 atmospheric pressure plasma: epoxidation without oxidant waste stream[J]. Plasma Process Polym, 2020, 17(1): 1900162. DOI: 10.1002/ppap.201900162. [4] MARASCU V, LAZEA-STOYANOVA A, STANCU C, et al. The influence of plasma operation parameters on synthesis process of copper particles at atmospheric pressure[J]. Plasma Process Polym, 2018, 15(1): 1700091. DOI: 10.1002/ppap.201700091. [5] HABIB T, CAIUT J M A, CAILLIER B. Synthesis of silver nanoparticles by atmospheric pressure plasma jet[J]. Nanotechnology, 2022, 33(32): 325603. DOI: 10.1088/1361-6528/ac6528. [6] LI X C, LIU R J, LI X N, et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure[J]. Phys Plasmas, 2019, 26(2): 023510. DOI: 10.1063/1.5063328. [7] WU J C, WU K Y, CHEN J Y, et al. Influence of air addition on surface modification of polyethylene terephthalate treated by an atmospheric pressure argon plasma brush[J]. Plasma Sci Technol, 2021, 23(8): 085504. DOI: 10.1088/2058-6272/ac0109. [8] LIU Z Y, XU J G, ZHU X, et al. Study on discharge characteristics and improving surface hydrophobicity of epoxy resin by nanosecond pulse excited argon/hexamethyldisiloxane jet array[J]. High Volt, 2022, 7(4): 771-781. DOI: 10.1049/hve2.12194. [9] 韩国新,武珈存,贾焓潇,等.平行场刷形等离子体羽的放电特性及其聚合物表面改性[J].河北大学学报(自然科学版), 2023, 43(4): 369-378. DOI: 10.3969/j.issn.1000-1565.2023.04.005. [10] LIU F W, NIE L L, LU X P. On the green aurora emission of Ar atmospheric pressure plasma[J]. Plasma Sci Technol, 2022, 24(5): 055408. DOI: 10.1088/2058-6272/ac52ec. [11] LI X C, WANG B, JIA P Y, et al. Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Sci Technol, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6. [12] WU J C, WU K Y, REN C H, et al. Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases[J]. Plasma Sci Technol, 2020, 22(5): 055505. DOI: 10.1088/2058-6272/ab6c00. [13] CHEN Z Y, LIU D X, CHEN C, et al. Analysis of the production mechanism of H2O2 in water treated by helium DC plasma jets[J]. J Phys D: Appl Phys, 2018, 51(32): 325201. DOI: 10.1088/1361-6463/aad0eb. [14] LI X C, CHU J D, ZHANG Q, et al. Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge[J]. Appl Phys Lett, 2016, 109(20): 204102. DOI: 10.1063/1.4966558. [15] LI X C, BAO W T, JIA P Y, et al. Characteristics of a large gap uniform discharge excited by DC voltage at atmospheric pressure[J]. Chin Phys B, 2014, 23(9): 095202. DOI: 10.1088/1674-1056/23/9/095202. [16] KOGELSCHATZ U. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chem Plasma Process, 2003, 23(1): 1-46. DOI: 10.1023/A:1022470901385. [17] OUYANG J T, LI B, HE F, et al. Nonlinear phenomena in dielectric barrier discharges: pattern, striation and chaos[J]. Plasma Sci Technol, 2018, 20(10): 103002. DOI: 10.1088/2058-6272/aad325. [18] 王朝阳,徐洪志,李彩霞,等.具有调制作用的介质阻挡放电气隙中的超四边形斑图[J].河北大学学报(自然科学版), 2021, 41(2): 140-146. DOI: 10.3969/j.issn.1000-1565.2021.02.005. [19] 王玥,潘宇扬,李耀华,等.介质阻挡放电中带线六边形斑图[J].河北大学学报(自然科学版), 2022, 42(2): 144-149. DOI: 10.3969/j.issn.1000-1565.2022.02.006. [20] LI X C, KANG P C, GAO K, et al. Diffuse and spotted anode layers in an atmospheric pressure glow discharge with a water electrode and miniature argon flow[J]. Plasma Process Polym, 2020, 17(7): 1900223. DOI: 10.1002/ppap.201900223. [21] WU K Y, ZHAO N, NIU Q M, et al. Various concentric-ring patterns formed in a water-anode glow discharge operated at atmospheric pressure[J]. Plasma Sci Technol, 2022, 24(5): 055405. DOI: 10.1088/2058-6272/ac48e1. [22] JIA P Y, GAO K, ZHOU S, et al. Morphology evolution of an atmospheric pressure glow discharge initiated in the air gap between a liquid cathode and a needle anode[J]. Plasma Sources Sci Technol, 2021, 30(9): 095021. DOI: 10.1088/1361-6595/abde51. [23] LI X C, GENG J L, JIA P Y, et al. Spatial-temporal evolution of self-organized loop-patterns on a water surface and a diffuse discharge in the gap[J]. Phys Plasmas, 2017, 24(11): 113504. DOI: 10.1063/1.5010209. [24] VERREYCKEN T, BRUGGEMAN P, LEYES C. Anode pattern formation in atmospheric pressure air glow discharges with water anode[J]. J Appl Phys, 2009, 105(8): 083312. DOI: 10.1063/1.3117223. [25] GAO K, WU K Y, JIA P Y, et al. Observation of self-organized honeycomb patterns by fast photography in a liquid-anode discharge[J]. Phys Plasmas, 2019, 26(11): 113501. DOI: 10.1063/1.5116063. [26] SHIRAI N, UCHIDA S, TOCHIKUBO F. Influence of oxygen gas on characteristics of self-organized luminous pattern formation observed in an atmospheric dc glow discharge using a liquid electrode[J]. Plasma Sources Sci Technol, 2014, 23(5): 054010. DOI: 10.1088/0963-0252/23/5/054010. [27] CALLEGARI T, BERNECKER B, BOEUF J P. Pattern formation and dynamics of plasma filaments in dielectric barrier discharges[J]. Plasma Sources Sci Technol, 2014, 23(5): 054003. DOI: 10.1088/0963-0252/23/5/054003. [28] LI X C, WANG L, RAN J X, et al. Influence of wall charges on discharge characteristics of surface discharge[J]. Chin Phys Lett, 2005, 22(3): 640-643. DOI: 10.1088/0256-307X/22/3/033. [29] MUKAIGAWA S, FUJIWARA K, SATO T, et al. Effect of barrier capacitance on self-organized structure in dielectric-barrier discharge microplasma[J]. Jpn J Appl Phys, 2016, 55(7S2): 07LB04. DOI: 10.7567/jjap.55.07lb04. [30] 韩育宏,贾鹏英,鲍文婷,等.微间隙大气压空气介质阻挡放电模式的转化[J].高电压技术, 2015, 41(2): 572-577. DOI: 10.13336/j.1003-6520.hve.2015.02.033. [31] LI X C, LIU R, JIA P Y, et al. Influence of driving frequency on discharge modes in the dielectric barrier discharge excited by a triangle voltage[J]. Phys Plasmas, 2018, 25(1): 013512. DOI: 10.1063/1.4998615. [32] STAUSS S, MUNEOKA H, EBATO N, et al. Self-organized pattern formation in helium dielectric barrier discharge cryoplasmas[J]. Plasma Sources Sci Technol, 2013, 22(2): 025021. DOI: 10.1088/0963-0252/22/2/025021. [33] ZHANG Y H, NING W J, DAI D, et al. Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Sci Technol, 2019, 21(7): 074003. DOI: 10.1088/2058-6272/ab10a7. [34] CHU H Y, HUANG B S. Gap-dependent transitions of atmospheric microplasma in open air[J]. Phys Plasmas, 2011, 18(4): 043501. DOI: 10.1063/1.3575628. [35] DUAN X X, OUYANG J T, ZHAO X F, et al. Pattern formation and boundary effect in dielectric barrier glow discharge[J]. Phys Rev E, 2009, 80: 016202. DOI: 10.1103/physreve.80.016202. [36] PURWINS H G, BERKEMEIER J. Self-organized patterns in planar low-temperature DC gas discharge[J]. IEEE Trans Plasma Sci, 2011, 39(11): 2116-2117. DOI: 10.1109/TPS.2011.2158558. [37] PURWINS H G. Self-organized patterns in planar low-temperature AC gas discharge[J]. IEEE Trans Plasma Sci, 2011, 39(11): 2112-2113. DOI: 10.1109/TPS.2011.2158557. [38] GUREVICH E L, ASTROV Y A, PURWINS H G. Pattern formation in planar dc-driven semiconductor-gas discharge devices: two mechanisms[J]. J Phys D: Appl Phys, 2005, 38(3): 468-476. DOI: 10.1088/0022-3727/38/3/019. [39] ZANIN A L, GUREVICH E L, MOSKALENKO A S, et al. Rotating hexagonal pattern in a dielectric barrier discharge system[J]. Phys Rev E, 2004, 70(3): 036202. DOI: 10.1103/physreve.70.036202. [40] BERNECKER B, CALLEGARI T, BLANCO S, et al. Hexagonal and honeycomb structures in Dielectric Barrier Discharges[J]. Eur Phys J Appl Phys, 2009, 47(2): 22808. DOI: 10.1051/epjap/2009082. [41] DONG L F, LI B, LU N, et al. Hexagonal superlattice pattern consisting of colliding filament pairs in a dielectric barrier discharge[J]. Phys Plasmas, 2012, 19(5): 052304. DOI: 10.1063/1.4717466. [42] FENG J Y, PAN Y Y, LI C X, et al. Striped superlattice pattern in dielectric barrier discharge[J]. Phys Plasmas, 2020, 27(6): 063516. DOI: 10.1063/1.5145253. [43] DONG L F, FAN W L, HE Y F, et al. Square superlattice pattern in dielectric barrier discharge[J]. Phys Rev E, 2006, 73(6): 066206. DOI: 10.1103/physreve.73.066206. [44] DONG L F, MI Y L, PAN Y Y. Spatio-temporal dynamics and formation mechanism of the square super-lattice pattern with Saturn-like white-eye in dielectric barrier discharge[J]. Phys Plasmas, 2020, 27(2): 023504. DOI: 10.1063/1.5127962. [45] HUANG J Y, PAN Y Y, LIU F C, et al. A dot-line square super-lattice pattern with surface discharge in dielectric barrier discharge[J]. Phys Plasmas, 2018, 25(10): 103503. DOI: 10.1063/1.5027787. [46] SUN H Y, DONG L F, LIU F C, et al. Study on spatiotemporal dynamic and spectral diagnosis of snowflake pattern in dielectric barrier discharge[J]. Phys Plasmas, 2018, 25(11): 113507. DOI: 10.1063/1.5042306. [47] DONG L F, LIU B B, LI C X, et al. Formation of kagome-white-eye-honeycomb hexagonal superlattice pattern in dielectric barrier discharge[J]. Phys Rev E, 2019, 100(6): 063201. DOI: 10.1103/physreve.100.063201. [48] DONG L F, SHANG J, HE Y F, et al. Collective vibration of discharge current filaments in a self-organized pattern within a dielectric barrier discharge[J]. Phys Rev E, 2012, 85(6): 066403. DOI: 10.1103/physreve.85.066403. [49] ZHAO Y, DONG L F, WANG Y J, et al. White-eye hexagonal pattern in dielectric barrier discharge[J]. J Phys Soc Jpn, 2014, 83(12): 124501. DOI: 10.7566/jpsj.83.124501. [50] FU H Y, DONG L F, ZHAO Y, et al. Spot-halo hexagon pattern in dielectric barrier discharge[J]. J Phys Soc Jpn, 2015, 84(4): 044501. DOI: 10.7566/jpsj.84.044501. [51] BOEUF J P, BERNECKER B, CALLEGARI T, et al. Generation, annihilation, dynamics and self-organized patterns of filaments in dielectric barrier discharge plasmas[J]. Appl Phys Lett, 2012, 100(24): 244108. DOI: 10.1063/1.4729767. ( |
[1] | 类维倩,郭丰路,黄头生. 一类时空离散捕食系统的混沌与斑图转变[J]. 河北大学学报(自然科学版), 2023, 43(4): 346-356. |
[2] | 张文心,王伟伟,刘峰,樊智慧,王景全,张晋安. 针-板型介质阻挡放电的光电特性[J]. 河北大学学报(自然科学版), 2023, 43(1): 35-39. |
[3] | 王玥,潘宇扬,李耀华,李彩霞,赵薇,付少铎. 介质阻挡放电中带线六边形斑图[J]. 河北大学学报(自然科学版), 2022, 42(2): 144-149. |
[4] | 周志向,郭雪,刘富成,王晓菲. 电极曲率对同轴介质阻挡放电非线性行为的影响[J]. 河北大学学报(自然科学版), 2021, 41(3): 258-264. |
[5] | 王朝阳,徐洪志,李彩霞,郭丽婷,于广林. 具有调制作用的介质阻挡放电气隙中的超四边形斑图[J]. 河北大学学报(自然科学版), 2021, 41(2): 140-146. |
[6] | 苏泽华,弓丹丹,刘仁静,贾鹏英,庞学霞. 大气压下双电极和三电极介质阻挡放电的比较研究[J]. 河北大学学报(自然科学版), 2019, 39(3): 235-240. |
[7] | 闫佳,冯帆,张永亮,贺亚峰. Oregonator模型中欠扩散斑图动力学[J]. 河北大学学报(自然科学版), 2017, 37(1): 19-23. |
[8] | 张浩,董丽芳,王浩,高星. 等离子体表面处理装置[J]. 河北大学学报(自然科学版), 2016, 36(4): 358-361. |
[9] | 王谦,张浩,董丽芳,冯建宇,魏领燕. 亮暗点蜂窝斑图中等离子参量的光谱测量[J]. 河北大学学报(自然科学版), 2016, 36(1): 17-20. |
[10] | 商洁. 发光斑图随放电功率转化研究[J]. 河北大学学报(自然科学版), 2015, 35(4): 348-353. |
[11] | 张浩,董丽芳,赵龙虎,王谦. 介质阻挡放电系统中相邻沿面放电之间的 相互影响[J]. 河北大学学报(自然科学版), 2015, 35(2): 128-130. |
[12] | 刘富成,王晓菲. 大气压氩气介质阻挡均匀放电的数值模拟[J]. 河北大学学报(自然科学版), 2014, 34(4): 363-367. |
[13] | 赵龙虎,董丽芳,狄聪,张新普,张超. 介质阻挡放电中的八边形结构[J]. 河北大学学报(自然科学版), 2013, 33(3): 242-246. |
[14] | 李雪辰,赵欢欢,刘润甫,常媛媛. 介质阻挡放电中等离子体子弹的速度[J]. 河北大学学报(自然科学版), 2013, 33(2): 142-147. |
[15] | 刘书华,谷延霞. 耦合反应扩散体系中的超点阵斑图[J]. 河北大学学报(自然科学版), 2012, 32(6): 597-601. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||