河北大学学报(自然科学版) ›› 2024, Vol. 44 ›› Issue (4): 355-364.DOI: 10.3969/j.issn.1000-1565.2024.04.003

• • 上一篇    下一篇

考虑碳减排的共燃发电厂鲁棒可信性选址决策优化

陈爱霞1,陈爱如2,梁智勇3   

  • 收稿日期:2023-11-14 出版日期:2024-07-25 发布日期:2024-07-12
  • 作者简介:陈爱霞(1982—),女,河北大学讲师,博士,主要从事模糊优化、鲁棒优化等方向研究.
    E-mail:chenaixia@hbu.edu.cn
  • 基金资助:
    河北省社会科学基金资助项目(HB23GL019)

Optimizing robust credibility location decision of co-firing power plants considering carbon emission reduction

CHEN Aixia1,CHEN Airu2, LIANG Zhiyong3   

  1. 1. College of Mathematics and Information Science, Hebei University, Baoding 071002, China; 2. School of Management, Hebei University, Baoding 071002, China; 3. Hebei Information Engineering School, Baoding 071000, China
  • Received:2023-11-14 Online:2024-07-25 Published:2024-07-12

摘要: 基于“碳达峰、碳中和”战略目标,研究考虑碳减排的共燃发电厂选址决策问题.受天气状况、市场环境等外部因素的影响,生物质供应能力和生物质价格等参数具有不确定性,构造一个非精确可能性分布集来描述问题中的不确定参数,进而建立一个分布鲁棒可信性选址优化模型.通过推导鲁棒可信性目标和鲁棒可信性约束的等价形式,将原模型重构为一个可计算的混合整数线性规划模型.最后利用算例分析验证提出方法的有效性.

关键词: 共燃发电厂选址, 碳减排, 非精确可能性分布集, 分布鲁棒可信性优化

Abstract: Based on the strategic goal of carbon peak and carbon neutrality, this paper studies the decision-making problem of co-firing power plant location considering carbon emission reduction. Due to the influence of weather conditions, market environments and other external factors, the parameters such as biomass supply capacity and biomass price are uncertain. To address this problem, this paper constructs an ambiguity set of possibility distributions to characterize the uncertain parameters, and then proposes a distributionally robust credibility location optimization model. The original model is reformulated as a computable mixed-integer linear programming model by deriving the equivalent forms of robust credibility objective and robust credibility constraint. Finally, the effectiveness of the proposed method is demonstrated by an example.

Key words: co-firing power plant location, carbon emission reduction, an ambiguity set of possibility distributions, distributionally robust credibility optimization

中图分类号: