[1] LIU Z R, HU J J, GAO F X, et al. Biodegradable and resilient poly(propylene carbonate)based foam from high pressure CO2 foaming[J]. Polym Degrad Stab, 2019, 165: 12-19. DOI: 10.1016/j.polymdegradstab.2019.04.019. [2] POUDEL M B, KIM A R, RAMAKRISHAN S, et al. Integrating the essence of metal organic framework-derived ZnCoTe-N-C/MoS2 cathode and ZnCo-NPS-N-CNT as anode for high-energy density hybrid supercapacitors[J]. Compos Part B Eng, 2022, 247: 110339. DOI: 10.1016/j.compositesb.2022.110339. [3] GAO L K, CUI X, SEWELL C D, et al. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction[J]. Chem Soc Rev, 2021, 50(15): 8428-8469. DOI: 10.1039/d0cs00962h. [4] RAY A, SULTANA S, PARAMANIK L, et al. Recent advances in phase, size, and morphology-oriented nanostructured nickel phosphide for overall water splitting[J]. J Mater Chem A, 2020, 8(37): 19196-19245. DOI: 10.1039/D0TA05797E. [5] YUE C W, WANG L C, WANG H H, et al. First-principles study on the electrocatalytic oxygen evolution reaction on the(110)surfaces of layered double hydroxides[J]. J Phys Chem C, 2022, 126(43): 18351-18365. DOI: 10.1021/acs.jpcc.2c07086. [6] RAVEENDRAN A, CHANDRAN M, DHANUSURAMAN R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts[J]. RSC Adv, 2023, 13(6): 3843-3876. DOI: 10.1039/d2ra07642j. [7] WU Q N, WANG Y N, ZHANG K X, et al. Advances and status of anode catalysts for proton exchange membrane water electrolysis technology[J]. Mater Chem Front, 2023, 7(6): 1025-1045. DOI: 10.1039/D3QM00010A. [8] SELVAM N C S, DU L J, XIA B Y, et al. Reconstructed water oxidation electrocatalysts: the impact of surface dynamics on intrinsic activities[J]. Adv Funct Materials, 2021, 31(12): 2008190. DOI: 10.1002/adfm.202008190. [9] CHATENET M, POLLET B G, DEKEL D R, et al. Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments[J]. Chem Soc Rev, 2022, 51(11): 4583-4762. DOI: 10.1039/D0CS01079K. [10] EDE S R, LUO Z P. Tuning the intrinsic catalytic activities of oxygen-evolution catalysts by doping: a comprehensive review[J]. J Mater Chem A, 2021, 9(36): 20131-20163. DOI: 10.1039/D1TA04032D. [11] DENG Q, SUN Y, WANG J, et al. Boosting OER performance of IrO2 in acid via urchin-like hierarchical-structure design[J]. Dalton Trans, 2021, 50(18): 6083-6087. DOI: 10.1039/D1DT00329A. [12] WANG Y, YANG R, DING Y J, et al. Unraveling oxygen vacancy site mechanism of Rh-doped RuO2 catalyst for long-lasting acidic water oxidation[J]. Nat Commun, 2023, 14(1): 1412. DOI: 10.1038/s41467-023-37008-8. [13] JOHNSON D, PRANADA E, YOO R, et al. Review and perspective on transition metal electrocatalysts toward carbon-neutral energy[J]. Energy Fuels, 2023, 37(3): 1545-1576. DOI: 10.1021/acs.energyfuels.2c03378. [14] GUO B R, HUO H H, ZHUANG Q X, et al. Iron oxyhydroxide: structure and applications in electrocatalytic oxygen evolution reaction[J]. Adv Funct Materials, 2023, 33(25): 2300557. DOI: 10.1002/adfm.202300557. [15] GAO L K, CUI X, SEWELL C D, et al. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction[J]. Chem Soc Rev, 2021, 50(15): 8428-8469. DOI: 10.1039/d0cs00962h. [16] SUN T, TANG Z Y, ZANG W J, et al. Ferromagnetic single-atom spin catalyst for boosting water splitting[J]. Nat Nanotechnol, 2023, 18(7): 763-771. DOI: 10.1038/s41565-023-01407-1. [17] GAN J Y, LI F H, TANG Y R, et al. Theoretical study of transition-metal-modified Mo2CO2 MXene as a catalyst for the hydrogen evolution reaction[J]. ChemSusChem, 2020, 13(22): 6005-6015. DOI: 10.1002/cssc.202002163. [18] LI Z, QI Z Y, WANG S W, et al. In situ formed Pt3Ti nanoparticles on a two-dimensional transition metal carbide(MXene)used as efficient catalysts for hydrogen evolution reactions[J]. Nano Lett, 2019, 19(8): 5102-5108. DOI: 10.1021/acs.nanolett.9b01381. [19] WANG X, ZHANG Y W, SI H N, et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2[J]. J Am Chem Soc, 2020, 142(9): 4298-4308. DOI: 10.1021/jacs.9b12113. [20] KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169-11186. DOI: 10.1103/physrevb.54.11169. [21] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Phys Rev B Condens Matter, 1992, 45(23): 13244-13249. DOI: 10.1103/physrevb.45.13244. [22] BLÖCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953-17979. DOI: 10.1103/physrevb.50.17953. [23] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B, 1976, 13(12): 5188-5192. DOI: 10.1103/physrevb.13.5188. [24] ZANG Y, LU D Q, WANG K, et al. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting[J]. Nat Commun, 2023, 14(1): 1792. DOI: 10.1038/s41467-023-37530-9. [25] LI Y G, WANG H L, XIE L M, et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2011, 133(19): 7296-7299. DOI: 10.1021/ja201269b. ( |