[1] TAO M F, LI R, XU T T, et al. Vitexin and isovitexin delayed ageing and enhanced stress-resistance through the activation of the SKN-1/Nrf2 signaling pathway [J]. Int J Food Sci Nutr, 2023, 74(6): 685-694. DOI: 10.1080/09637486.2023.2243055. [2] HUANG Y S, LUO W, CHEN S Y, et al. Isovitexin alleviates hepatic fibrosis by regulating miR-21-mediated PI3K/Akt signaling and glutathione metabolic pathway: based on transcriptomics and metabolomics [J]. Phytomedicine, 2023, 121: 155117. DOI: 10.1016/J.PHYMED.2023.155117. [3] 玄鸿雁,阚璇,朱振胜.异牡荆素调节miR-107/CCND1轴对胰腺癌细胞增殖、凋亡、迁移和侵袭的影响[J].现代肿瘤医学, 2023, 31(15): 2756-2764. DOI: 10.3969/j.issn.1672-4992.2023.15.002. [4] 赵富周,丁成智,李晓明.异牡荆素对非小细胞性肺癌细胞自我更新和凋亡的影响[J].中国临床药理学杂志, 2022, 38(3): 219-223. DOI: 10.13699/j.cnki.1001-6821.2022.03.007. [5] LIU M X, LI T, WANG W G, et al. Regulatory effect of isovitexin on MAPK/NF-κB signal in mice with acute ulcerative colitis [J]. J Asian Nat Prod Res, 2023, 25(8):765-782. DOI: 10.1080/10286020.2022.2142121. [6] FERDAUSI N, ISLAM S, RIMTI F H, et al. Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism [J]. J Adv Vet Anim Res, 2022, 9(2): 230-240. DOI: 10.5455/JAVAR.2022.I588. [7] 贺丽苹,余雪婷,周铭林,等.一种从檀香叶中提取高纯牡荆素和异牡荆素的方法: 201811420926.0[P] , 2018-11-22. [8] 黄瑀莘,韦锦斌,林兴,等.天胡荽黄酮苷类单体异牡荆素的制备方法及应用: 202110476459.9[P] , 2021-04-29 [9] CHE ZAIN M S, LEE S Y, TEO C Y, et al. Adsorption/desorption characteristics and simultaneous enrichment of orientin, isoorientin, vitexin and isovitexin from hydrolyzed oil palm leaf extract using macroporous resins[J]. Processes, 2021, 9(4): 659. DOI: 10.3390/pr9040659. [10] ACHUTHA S, JOHNSON E, KUMARI NISHA S, et al. Antimicrobial biodegradable polymeric materials for food packaging applications: current status and future directions[J]. Mater Sci Forum, 2022, 1073: 49-56. DOI: 10.4028/p-a5my86. [11] ARZHAKOVA О V, KOPNOV A Y, CHAPLYGIN D K, et al. Flame-retardant nanocomposite polymeric materials based on high-density polyethylene and aluminum hydroxide nanoparticles[J]. Russ J Gen Chem, 2022, 92(10): 1963-1971. DOI: 10.1134/S1070363222100103. [12] ZHANG M Q. Self-healing polymeric materials: on a winding road to success[J]. Chin J Polym Sci, 2022, 40(11): 1315-1316. DOI: 10.1007/s10118-022-2870-6. [13] ZHANG M M, LIU H Y, HAN Y M, et al. On-line enrichment and determination of aristolochic acid in medicinal plants using a MOF-based composite monolith as adsorbent[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2020, 1159: 122343. DOI: 10.1016/j.jchromb.2020.122343. [14] TANG T F, LI X H, ZHU J Q, et al. Solid-phase microextraction with MIL-53(Al)-polymer monolithic column coupled to pressurized capillary electrochromatography for determination of chlorogenic acid and ferulic acid in sugarcane samples[J]. Anal Sci, 2023, 39(6): 925-933. DOI: 10.1007/s44211-023-00297-6. [15] XUAN K, PU Y F, LI F, et al. Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol[J]. Chin J Catal, 2019, 40(4): 553-566. DOI: 10.1016/s1872-2067(19)63291-2. [16] LI X T, ZHANG F, ZHANG M J, et al.Comparative study on the flame retardancy and retarding mechanism of rare earth(La, Ce, and Y)-based organic frameworks on epoxy resin[J]. ACS Omega, 2021, 6(51): 35548-35558. DOI:10.1021/ACSOMEGA.1C05088. [17] LV Y Q, YU H T, XU P C, et al. Metal organic framework of MOF-5 with hierarchical nanopores as micro-gravimetric sensing material for aniline detection[J]. Sens Actuat B Chem, 2018, 256: 639-647. DOI: 10.1016/j.snb.2017.09.195. [18] CHEN P, HE X H, PANG M B, et al. Iodine capture using Zr-based metal-organic frameworks(Zr-MOFs): adsorption performance and mechanism [J]. ACS Applied Materials Interfaces, 2020, 12(18): 20429-20439. DOI: 10.1021/acsami.0c02129. [19] AN G H, ZHENG H M, GUO L S, et al. A metal-organic framework(MOF)built on surface-modified Cu nanoparticles eliminates tumors via multiple cascading synergistic therapeutic effects[J]. J Colloid Interface Sci, 2024, 662: 298-312. DOI: 10.1016/j.jcis.2024.02.055. [20] ZHANG W J, WEI K, FAN L F, et al. Modification of carnation-like CuInS2 with Cu-MOF nanoparticles for efficient photocatalytic hydrogen production[J]. Int J Hydrog Energy, 2024, 59: 551-560. DOI: 10.1016/j.ijhydene.2024.01.342. [21] MIRZAEI S, LOTFIKATOOLI L, AHMADPOUR A, et al. Enhancing energy carrier gas storage: novel MOF-decorated carbons with high affinity toward methane and hydrogen[J]. Chem Eng Res Des, 2024, 203: 419-430. DOI: 10.1016/j.cherd.2024.01.049. [22] YANG Y G, ZHOU Z X, WANG T, et al. MOF-on-MOF heterostructure boosting AIE sensing and triggered structural collapse for histamine detection[J]. Talanta, 2024, 270: 125632. DOI: 10.1016/j.talanta.2024.125632. [23] RIMI, KUMAR P, UTTAM B, et al. Highly efficient cauliflower-like palladium-loaded porous MOF as a robust material for the degradation of organic dyes[J]. ACS Omega, 2023, 8(42): 38895-38904. DOI: 10.1021/acsomega.3c03014. [24] KEYPOUR H, KOUHDAREH J, RABIEI K, et al. Pd nanoparticles decorated on a porous Co(BDC-NH2)MOF as an effective heterogeneous catalyst for dye reduction[J]. Nanoscale Adv, 2023, 5(20): 5570-5579. DOI: 10.1039/D3NA00379E. [25] GUHATHAKURTA S, ERDOGDU N U, HOFFMANN J J, et al. COX17 acetylation via MOF-KANSL complex promotes mitochondrial integrity and function[J]. Nat Metab, 2023, 5(11): 1931-1952. DOI: 10.1038/s42255-023-00904-w. [26] XUE R J, ZHUGE Y N, LIU G L, et al. Flexible fabrication of a novel SiO2/AF/ZIF-L composite embedded with MOF structure and its thermal insulation properties[J]. Ceram Int, 2023, 49(22): 36619-36627. DOI: 10.1016/j.ceramint.2023.08.345. [27] GRIFFITHS K, GREENFIELD J L, HALCOVITCH N R, et al. Systematic investigation into the photoswitching and thermal properties of arylazopyrazole-based MOF host-guest complexes[J]. Cryst Growth Des, 2023, 23(10): 7044-7052. DOI: 10.1021/acs.cgd.2c01384. [28] YUAN N, TAN K Q, LI Q Y, et al. In situ synthesis of MIL-53-type eco-MOF from high-alumina fly ash for efficiently removing fluoride from water[J]. Prog Nat Sci Mater Int, 2023, 33(5): 681-690. DOI: 10.1016/j.pnsc.2023.12.005. [29] 赵娟霞.ZrO2及Zr基MOFs材料CO2吸附性能研究[D].呼和浩特:内蒙古大学, 2021. [30] 刘浩.MOF-801的合成设计及气体分离性能研究[D].宁波:中国科学院大学(中国科学院宁波材料技术与工程研究所), 2022. ( |