河北大学学报(自然科学版) ›› 2018, Vol. 38 ›› Issue (2): 113-118.DOI: 10.3969/j.issn.1000-1565.2018.02.001

• •    下一篇

基于泰勒展开式的模糊微分方程数值解法

尤翠莲,郝杨阳   

  • 收稿日期:2017-10-27 出版日期:2018-03-25 发布日期:2018-03-25
  • 作者简介:尤翠莲(1977—),女,河北唐山人,河北大学副教授,博士,主要从事不确定理论与模糊微分方程的研究. E-mail:yycclian@163.com
  • 基金资助:
    国家自然科学基金资助项目(61374184)

Numerical method for solving fuzzy differential equations based on Taylor expansion

YOU Cuilian, HAO Yangyang   

  1. College of Mathematics and Information Science, Hebei University, Baoding 071002, China
  • Received:2017-10-27 Online:2018-03-25 Published:2018-03-25

摘要: 由刘过程驱动的模糊微分方程是处理模糊动态问题的重要工具,在求解由刘过程驱动的模糊微分方程时,有一些模糊微分方程并不能求出其解析解,这时往往需要研究一些可以求出模糊微分方程近似解的方法.本文利用模糊Taylor展开式,给出了一种基于模糊Taylor展开式的模糊微分方程数值解法,并证明了该数值解法的收敛性.

关键词: 刘过程, 模糊微分, 模糊积分, 模糊微分方程, Taylor公式

Abstract: Fuzzy differential equation driven by Liu process is an important tool to deal with dynamic fuzzy problem. When solving fuzzy differential equation,the analytical solution for some fuzzy differential equation driven by Liu process can’t be obtained sometimes,thus it is necessary for us to discuss the numerical method in most situations.In this paper,a numerical method for solving fuzzy differential equation based on fuzzy Taylor expansion is given and its convergence is also proved.

Key words: Liu process, fuzzy differential, fuzzy integral, fuzzy differential equation, Taylor expansion

中图分类号: