[1] FLETCHER R, REEVES C. Function minimization by conjugate gradients[J]. Computer Journal, 1964, 7(2): 149-154. DOI: 10.1093/comjnl/7.2.149. [2] POLYAK B T. The conjugate gradient method in extreme problems[J]. Ussr Computational Mathematics and Mathematical Physics, 1969, 9(4): 94-112. DOI: 10.1016/0041-5553(69)90035-4. [3] GILBERT J C, NOCEDAL J. Global convergence properties of conjugate gradient methods for optimization[J]. Siam Journal on Optimization, 1992, 2(1): 21-42. DOI: 10.1137/0802003. [4] DAI Y H, YUAN Y. A nonlinear conjugate gradient method with a strong global convergence property[J]. Society for Industrial and Applied Mathematics, 1999, 10(1): 177-182. DOI: 10.1137/S1052623497318992. [5] MIELE A, CANTRELL J W. Study on a memory gradient method for the minimization of functions[J]. Journal of Optimization Theory and Applications, 1969, 3(6): 459-470. DOI: 10.1007/bf00929359. [6] CRAGG E E, LEVY A V. Study on Supermemory gradient method for the minimization of function[J]. Journal of Optimization Theory and Applications, 1969, 4(3): 191-205. DOI: 10.1007/BF00930579. [7] WOLFE M A, VIAZMINSKY C. Supermemory descent methods for unconstrained minimization[J]. Journal of Optimization Theory and Applications, 1976, 18(4): 455-468. DOI: 10.1007/BF00932655. [8] SHI Z J. A new memory gradient under exact line search[J]. Asia Pacific Journal of Operational Research, 2003, 20(2): 275-284. [9] SHI Z J. A supermemory gradient method for unconstrained optimization[J]. Chinese Journal of Engineering Mathematics, 2000, 17(2): 93-96. [10] CANTRELL J W. Relation between the memory gradient method and the Fletcher-Revees method[J]. Journal of Optimization Theory and Applications, 1969, 4(1): 67-71. DOI: 10.1007/BF00928717. [11] OU Y G, WANG G S. A new supermemory gradient method for unconstrained optimization problems[J]. Optimization Letters, 2012, 6(5): 975-992. DOI: 10.1007/s11590-011-0328-9. [12] LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(1-3): 503-528. DOI: 10.1007/bf01589116. [13] NOCEDAL J. Updating quasi-Newton matrices with limited storage[J]. Mathematics of Computation, 1980, 35(151): 773-782. DOI: 10.1090/S0025-5718-1980-0572855-7. [14] TANG J Y, DONG L. A new memory gradient method and its convergence[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2010, 5(5): 25-29. [15] CHAMBERLAIN R M, POWELL M J D, LEMARECHAL C, et al. The watchdog technique for forcing convergence in algorithm for constrained optimization[J]. Springer Berlin Heidelberg, 1982, 16: 1-17. DOI: 10.1007/bfb0120945. [16] GRIPPO L, LAMPARIELLO F, LUDIDI S. A nonmonotone line search technique for Newton's method[J]. Society for Industrial and Applied Mathematics, 1986, 23(4): 707-716. DOI: 10.1137/0723046. [17] YU Z S, PU D G. A new nonmonotone line search technique for unconstrained optimization[J]. Journal of Computational and Applied Mathematics, 2008, 219(1): 134-144. DOI: 10.1016/j.cam.2007.07.008. [18] RONG Z X, SU K. A New Nonmonotone Memory Gradient Method for Unconstrained Optimization[J]. Mathematica Aeterna, 2015, 5(4): 635-647. |