[1] JELALI M. Control performance management in industrial automation: assessment, diagnosis and improvement of control loop performance[M]. London: Springer Science & Business Media, 2012. [2] TORRES B S, DE CARVALHO F B, DE OLIVEIRA F M, et al. Performance assessment of control loops-case studies[J]. Proc IFAC ADCHEM, Gramado, Brasil Google Scholar, 2016. [3] JELALI M. An overview of control performance assessment technology and industrial applications[J]. Control Eng Pract, 2006, 14(5): 441-466. DOI:10.1016/j.conengprac.2005.11.005. [4] YIN S, LI X W, GAO H J, et al. Data-based techniques focused on modern industry: an overview[J]. IEEE Trans Ind Electron, 2015, 62(1): 657-667. DOI:10.1109/TIE.2014.2308133. [5] PRECUP R E, ANGELOV P, COSTA B S J, et al. An overview on fault diagnosis and nature-inspired optimal control of industrial process applications[J]. Comput Ind, 2015, 74: 75-94. DOI:10.1016/j.compind.2015.03.001. [6] YIN S, DING S X, XIE X C, et al. A review on basic data-driven approaches for industrial process monitoring[J]. IEEE Trans Ind Electron, 2014, 61(11): 6418-6428. DOI:10.1109/TIE.2014.2301773. [7] BAUER M, HORCH A, XIE L, et al. The Current state of control loop performance monitoring - A survey of application in industry[J]. J Process Control, 2016, 38: 1-10. DOI:10.1016/j.jprocont.2015.11.002. [8] MCMILLAN G K. Tuning and control loop performance[M]. Momentum Press, 2014. [9] WANG Y Q, ZHANG H, WEI S L, et al. Control performance assessment for ILC-controlled batch processes in a 2-D system framework[J]. IEEE Trans Syst Man Cybern Syst, 2018, 48(9): 1493-1504. DOI:10.1109/TSMC.2017.2672563. [10] DA SILVA MOREIRA L J, JU 'NIOR JR, BARROS P R. IMC PI control loops frequency and time domains performance assessment and retuning[J]. IFAC-PapersOnLine, 2018, 51(4): 148-153. DOI:10.1016/j.ifacol.2018.06.117. [11] COKMEZ E, ATIÇ S, PEKER F, et al. Fractional-order PI controller design for integrating processes based on gain and phase margin specifications[J]. IFAC-PapersOnLine, 2018, 51(4): 751-756. DOI:10.1016/j.ifacol.2018.06.206. [12] ÅSTRÖM K J, HÄGGLUND T. Automatic tuning of simple regulators with specifications on phase and amplitude margins[J]. Automatica, 1984, 20(5): 645-651. DOI:10.1016/0005-1098(84)90014-1. [13] DE ARRUDA G H M, BARROS P R. Relay based gain and phase margins PI controller design[C] //IMTC 2001. Proceedings of the 18th IEEE Instrumentation and Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics(Cat No.01CH 37188). Budapest, Hungary. IEEE, 2001: 1189-1194. DOI:10.1109/IMTC.2001.928265. [14] FANG T, ZHANG R D, GAO F R. LQG benchmark based performance assessment of IMC-PID temperature control system[J]. Ind Eng Chem Res, 2017, 56(51): 15102-15111. DOI:10.1021/acs.iecr.7b03991. [15] KESAVAN E, AGALYA A, PALPANDIAN P, et al. Performance analysis and comparison of different tuning strategies of PI controller in conical tank[J]. Indian J Sci Technol, 2016, 9(11): 1-6. DOI:10.17485/ijst/2016/v9i11/89299. [16] PANYAM VUPPU G K R, MAKAM VENKATA S, KODATI S. Robust design of PID controller using IMC technique for integrating process based on maximum sensitivity[J]. J Control Autom Electr Syst, 2015, 26(5): 466-475. DOI:10.1007/s40313-015-0196-0. [17] GLAD T, LJUNG L. Control theory[M]. London: CRC Press, 2000. DOI:10.1201/9781315274737. [18] ACIOLI JU 'NIOR G, BARROS P R. Closed-loop evaluation and PI controller redesign satisfying classical robustness measures[C] //IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society. 2011: 504-509. DOI:10.1109/IECON.2011.6119362. [19] 陈炜.模型失配情形下典型热工过程PI控制器性能评估及优化重整定[D].南京:东南大学, 2020. [20] LI R X, WU F, HOU P Z, et al. Performance assessment of FO-PID temperature control system using a fractional order LQG benchmark[J]. IEEE Access, 2020,8: 116653-116662. DOI:10.1109/ACCESS.2020.3004701. [21] ZHU W W, ZHANG Z J, ARMAOU A, et al. Dynamic data reconciliation to improve the result of controller performance assessment based on GMVC[J]. ISA Trans, 2021, 117: 288-302. DOI:10.1016/j.isatra.2021.01.047. [22] 祝旺旺,张正江,闫正兵,等.动态数据校正技术用于GMVC控制器性能评估的改进[J].计算机测量与控制, 2021, 29(5): 241-246. DOI:10.16526/j.cnki.11-4762/tp.2021.05.048. [23] 龚正锋,李丽娟.基于性能评估的控制器参数整定策略[C] //第31届中国过程控制会议(CPCC 2020)摘要集,2020:132. [24] DING S X, LI L L. Control performance monitoring and degradation recovery in automatic control systems: a review, some new results, and future perspectives[J]. Control Eng Pract, 2021, 111: 104790. DOI:10.1016/j.conengprac.2021.104790. [25] 龚正锋,李丽娟.基于性能评估的控制器参数整定策略[C] //第31届中国过程控制会议(CPCC 2020)摘要集.徐州,2020:132.DOI:10.26914/c.cnkihy.2020.029925. [26] 于希宁,孙建平,孙海蓉,等.自动控制原理[M].北京:中国电力出版社, 2008. [27] 吴昊楠.PID及MPC控制器性能评估与优化方法研究及实施[D].兰州:兰州理工大学, 2020. [28] DA SILVA MOREIRA L J, DE A AGUIAR A P V, JU'NIOR J A, et al. Time and frequency data-driven PID retuning applied in MIMO process[J]. IFAC-PapersOnLine, 2021, 54(3): 469-474. DOI:10.1016/j.ifacol.2021.08.286. [29] KHOSROSHAHI M, POSHTAN J. Data-driven performance assessment of multivariable control loops using a modified Hurst exponent-based index[J]. Proc Inst Mech Eng Part I J Syst Control Eng, 2021, 235(6): 769-780. DOI:10.1177/0959651820966523. ( |