[1] FITZMAURICE C, ALLEN C, BARBER R M, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study[J]. JAMA Oncology, 2017, 3(4): 524-548. DOI:10.1001/jamaoncol.2016.5688. [2] 禇晶辉,李晓川,张佳琪,等.一种基于级联卷积网络的三维脑肿瘤精细分割[J]. 激光与光电子学进展, 2019, 56(10): 67-76. DOI:10.3788/LOP56.101001. [3] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C] //Proceedings of the IEEE conference on computer vision and pattern recognition, Boston, MA, USA: IEEE, 2015: 3431-3440. DOI:10.1109/CVPR.2015.7298965. [4] RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[C] // International Conference on Medical image computing and computer-assisted intervention, Berlin, Germany: Springer Shop, 2015: 234-241. DOI: 10.1007/978-3-319-24574-4_28. [5] HAO D, YANG G, LIU F, et al. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks[C] //annual conference on medical image understanding and analysis, Berlin, Germany: Springer Shop, 2017: 506-517. DOI:10.1007/978-3-319-60964-5_44. [6] DI L, HAO Z, ZHAO M, et al. Brain tumor segmention based on dilated convolution refine networks[C] // IEEE 16th International Conference on Software Engineering Research, Management and Applications(SERA), Boston, MA, USA: IEEE, 2018: 113-120. DOI:10.1109/SERA.2018.8477213. [7] LIU S, HUANG D, WANG Y. Receptive field block net for accurate and fast object detection[C] //Proceedings of the European conference on computer vision(ECCV), Berlin, Germany: Springer Shop, 2018: 385-400. DOI:10.1007/978-3-030-01252-6_24. [8] WANG Q, WU B, ZHU P, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks[C] //IEEECVF Conference on Computer Vision and Pattern Recognition(CVPR),Boston, MA, USA: IEEE, 2020:11531-11539. DOI:10.1109/CVPR42600.2020.01155. [9] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C] //Proceedings of the IEEE conference on computer vision and pattern recognition(CVPR), Boston, MA, USA: IEEE, 2016: 2818-2826. DOI:10.1109/CVPR.2016.308. [10] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image iegmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4):834-848. DOI:10.1109/TPAMI.2017.2699184. [11] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Deeplab: sSemantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 40(4): 834-848. DOI:10.1109/TPAMI.2017.2699184. [12] WOO S, PARK J, LEE J Y, et al. Cbam: Convolutional block attention module[C] //Proceedings of the European Conference on Computer Vision(ECCV), Berlin, Germany: Springer Shop, 2018: 3-19. DOI:10.1007/978-3-030-01234-2_1. [13] JIE H, LI S, GANG S, et al. Squeeze-and-Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI:10.1109/TPAMI.2019.2913372. [14] BJOERN H M, REYES M, LEEPUT K V, et al. The multimodal brain tumor image segmentation benchmark(BRATS)[J]. IEEE Transactions on Medical Imaging, 2015, 34(10):1993-2024. DOI:10.1109/TMI.2014.2377694. ( |