河北大学学报(自然科学版) ›› 2023, Vol. 43 ›› Issue (1): 95-102.DOI: 10.3969/j.issn.1000-1565.2023.01.014

• • 上一篇    下一篇

基于层次注意力机制的垃圾用户检测模型

杨晓晖,王卫宾   

  • 收稿日期:2022-05-02 出版日期:2023-01-25 发布日期:2023-02-22
  • 作者简介:杨晓晖(1975—),男,河北邢台人,河北大学教授,博士生导师,主要从事分布计算与信息安全研究.
    E-mail:yxh@hbu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFB0802300)

Spammer detection model based on hierarchical attention mechanism

YANG Xiaohui, WANG Weibin   

  1. School of Cyber Security and Computer, Hebei University, Baoding 071002, China
  • Received:2022-05-02 Online:2023-01-25 Published:2023-02-22

摘要: 目前基于网络的垃圾用户检测方法只考虑了简单社会关系,缺乏对更多复杂社会语义关系的利用,难以达到最优性能.针对这一挑战,提出一种基于层次注意力机制的垃圾用户检测模型(HAM-SD).模型首先使用异质信息网络对社交媒体进行建模,挖掘丰富的语义与结构信息,接着利用节点级注意力层聚合元路径邻居增强节点表示,同时利用自适应层级聚合模块选择不同层级特征提升表征能力,然后通过语义级注意力层融合不同元路径下的节点表示,最后带入分类检测模块实现垃圾用户检测.在公开数据集上的实验结果表明该模型能够有效检测垃圾用户,并在不平衡数据分布时保持较强的稳定性.

关键词: 社交媒体, 垃圾用户检测, 异质信息网络, 注意力机制

Abstract: The current network-based spammer detection methods only consider simple social relations and lack the utilization of more complex social semantic relations, so it is difficult to achieve optimal performance. Aiming at this challenge, this paper proposes a spammer detection model based on hierarchical attention mechanism(HAM-SD). The model first uses a heterogeneous information network to model social media to mine rich semantic and structural information, then uses a node-level attention layer to aggregate meta-path neighbors to enhance node representation, and uses an adaptive hierarchical aggregation module to select features at different levels to improve representation Then, the node representations under different meta-paths are fused through the semantic-level attention layer, and finally brought into the classification detection module to realize the detection of spammer. The results on public datasets show that the model can effectively detect spammer and maintain strong stability when the data distribution is unbalanced.

Key words: social media, spammer detection, heterogeneous information network, attention mechanism

中图分类号: