[1] ANAS S M, KUMARI S. Opinion mining based fake product review monitoring and removal system[C] //2021 6th International Conference on Inventive Computation Technologies, Coimbatore, India: IEEE, 2021: 985-988. DOI:10.1109/ICICT50816.2021.9358716. [2] 李忠,靳小龙,庄传志,等.面向图的异常检测研究综述[J].软件学报, 2021, 32(1): 167-193.DOI: 10.13328/j.cnki.jos.006100. [3] 张宇翔,孙菀,杨家海,等.新浪微博反垃圾中特征选择的重要性分析[J].通信学报, 2016, 37(8): 24-33.DOI: 10.11959/j.issn.1000-436x.2016152. [4] ZHENG X H, ZENG Z P, CHEN Z Y, et al. Detecting spammers on social networks[J]. Neurocomputing, 2015, 159: 27-34. DOI:10.1016/j.neucom.2015.02.047. [5] SONG J, LEE S, KIM J. Spam filtering in Twitter using sender receiver relationship[C] //International workshop on recent advances in intrusion detection, Berlin, German: Springer, 2011: 301-317. DOI:10.1007/978-3-642-23644-0_16. [6] CHEN H, LIU J, LUY Y Z, et al. Semi-supervised clue fusion for spammer detection in Sina Weibo[J]. Information Fusion, 2018, 44: 22-32. DOI:10.1016/j.inffus.2017.11.002. [7] 杨晓晖,梁笑.基于多视图融合的微博垃圾用户检测方法[J].华南理工大学学报(自然科学版), 2020, 48(12): 125-134. [8] DOU Y T, MA G X, YU P S, et al. Robust spammer detection by Nash reinforcement learning[C] //Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, USA: ACM, 2020: 924-933. DOI:10.1145/3394486.3403135. [9] WU F Z, WU C H, LIU J X. Semi-supervised collaborative learning for social spammer and spam message detection in microblogging[C] //Proceedings of the 27th ACM International Conference on Information and Knowledge Management, New York, USA: ACM, 2018: 1791-1794. DOI:10.1145/3269206.3269324. [10] YU D G, CHEN N, JIANG F, et al. Constrained NMF-based semi-supervised learning for social media spammer detection[J]. Knowl Based Syst, 2017, 125: 64-73. DOI:10.1016/j.knosys.2017.03.025. [11] LI C Z, WANG S Z, HE L F, et al. SSDMV: semi-supervised deep social spammer detection by multi-view data fusion[C] //Proceedings of 2018 IEEE International Conference on Data Mining, Singapore: IEEE, 2018: 247-256. DOI:10.1109/ICDM.2018.00040. [12] 宋畅,禹可,吴晓非.基于改进边权重的成对马尔可夫随机场模型的社交异常账号检测方法[J].计算机科学, 2020, 47(2): 251-255.DOI: 10.11896/jsjkx.190600172. [13] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C] //International Conference on Learning Representations, 2017. DOI:10.48550/arXiv.1609.02907. [14] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C] //Proceedings of the International Conference on Learning Representations, 2018. DOI:10.48550/arXiv.1710.10903. [15] WU Y J, LIAN D F, XU Y H, et al. Graph convolutional networks with Markov random field reasoning for social spammer detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1054-1061. DOI:10.1609/aaai.v34i01.5455. [16] 石川,王睿嘉,王啸.异质信息网络分析与应用综述[J].软件学报, 2022, 33(2): 598-621. DOI: 10.13328/j.cnki.jos.006357. [17] 龚卫华,沈松,裴小兵,等.基于位置的社交网络中双重异质社区的聚类与关联方法[J].计算机学报, 2020, 43(10): 1909-1923. DOI: 10.11897/SP.J.1016.2020.01909 [18] WANG S, CHEN Z Z, YU X et al. Heterogeneous graph matching networks for unknown malware detection[C] //Proceedings of the 28th International Joint Conference on Artificial Intelligence, California, USA: IJCAI, 2019: 3762-3770. DOI:10.24963/ijcai.2019/522. ( |