[1] LI X C, LIN X T, WU K Y, et al. Regularly-swelling plumes generated in atmospheric pressure argon plasma jet excited by a biased sinusoidal voltage[J]. Plasma Sources Sci Technol, 2019, 28(5): 055006. DOI: 10.1088/1361-6595/aaffff. [2] LI X C, CHEN J Y, LIN X T, et al. Morphology transition from diffuse to diffuse-and-filamentary for an argon plume with varying sinusoidal frequency or voltage amplitude[J]. Plasma Sources Sci Technol, 2020, 29(6): 065015. DOI: 10.1088/1361-6595/ab6362. [3] LI X C, LI X N, GAO K, et al. Comparison of deionized and tap water activated with an atmospheric pressure glow discharge[J]. Phys Plasmas, 2019, 26(3): 033507. DOI:10.1063/1.5080184. [4] LU X, NAIDIS G V, LAROUSSI M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects[J]. Phys Rep, 2016, 630: 1-84. DOI: 10.1016/j.physrep.2016.03.003. [5] LI X C, LIU R J, LI X N, et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure[J]. Phys Plasmas, 2019, 26(2): 023510. DOI: 10.1063/1.5063328. [6] WU J C, WU K Y, REN C H, et al. Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases[J]. Plasma Sci Technol, 2020, 22(5): 055505. DOI: 10.1088/2058-6272/ab6c00. [7] LI X C, WANG B, JIA P Y, et al. Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Sci Technol, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6. [8] TEODORESCU M, BAZAVAN M, IONITA E, et al. Characteristics of a long and stable filamentary argon plasma jet generated in ambient atmosphere[J]. Plasma Sources Sci Technol, 2015, 24(2): 025033. DOI: 10.1088/0963-0252/24/2/025033. [9] LI X C, LIN X T, WU K Y, et al. Plume transition from solid to hollow with increasing the bias value of a sinusoidal voltage applied to an argon plasma jet[J]. Plasma Process Polym, 2018, 15(4): e1700224. DOI: 10.1002/ppap.201700224. [10] CHANG Z S, YAO C W, CHEN S L, et al. Electrical and optical properties of Ar/NH3 atmospheric pressure plasma jet[J]. Phys Plasmas, 2016, 23(9): 093503. DOI:10.1063/1.4962183. [11] WU S, LU X P, ZOU D, et al. Effects of H2 on Ar plasma jet: from filamentary to diffuse discharge mode[J]. Phys Plasmas, 2013, 114(4): 043301. DOI: 10.1063/1.4816318. [12] URABE K, YAMADA K, SAKAI O. Discharge-mode transition in jet-type dielectric barrier discharge using argon/acetone gas flow ignited by small helium plasma jet[J]. Jpn J Appl Phys, 2011, 50(11): 116002. DOI: 10.1143/JJAP.50.116002. [13] SHANG K F, WANG X J, LI J, et al. Synergetic degradation of Acid Orange 7(AO7)dye by DBD plasma and persulfate[J]. Chem Eng J, 2017, 311: 378-384. DOI: 10.1016/j.cej.2016.11.103. [14] 刘忠伟,陈 强,王正铎,等. 大气压射流等离子体中O及OH自由基的发射光谱在线诊断[J]. 强激光与等离子体束, 2010, 22(10): 2461-2464. DOI: 10.3788/HPLPB20102210.2461. [15] 易善婷,刘峰,方志. 大气压 Ar/NH3/H2O 等离子体射流放电特性[J]. 高电压技术, 2019, 45(6): 1936-1944. DOI: 10.13336/j.1003-6520.hve.20180807002. [16] LI X C, JIA P Y, YUAN N, et al. Spectral intensity distribution of oxygen atom in a plasma plume[J]. Spectrosc Spect Anal, 2012, 32(4): 890-892. DOI: 10.3964/j.issn.1000-0593(2012)04-0890-03. [17] LIN X, TYL C, NAUDÉ N, et al. The role of associative ionization reactions in the memory effect of atmospheric pressure Townsend discharges in N2 with a small O2 addition[J]. J Phys D Appl Phys, 2020, 53(20): 205201. DOI: 10.1088/1361-6463/ab7518. [18] LUO J, JIANG G, WANG G L, et al. Preliminary study on atom O in high-enthalpy flow field[J]. Spectrosc Spect Anal, 2017, 37(2): 481-485. DOI: 10.3964/j.issn.1000-0593(2017)02-0481-05. [19] HUANG W T, LI S Z, WANG D Z, et al. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure[J]. Acta Phys Sin-Ch Ed, 2010, 59: 4110-4116. DOI: 1000-3290/2010/59(06)/4110-07. [20] LI S Z, HUANG W T, ZHANG J L, et al. Optical diagnosis of an argon/oxygen needle plasma generated at atmospheric pressure[J]. Appl Phys Lett, 2009, 94(11): 111501. DOI: 10.1063/1.3099339. [21] TANG J, CAO W, ZHAO W, et al. Characterization of stable brush-shaped large-volume plasma generated at ambient air[J]. Phys Plasmas, 2012, 19(1): 013501. DOI: 10.1063/1.3672511. [22] BARKHORDARI A, GANJOVI A, MIRZAEI S I. Experimental study of a positive DC corona jet working with Ar/CO2 gaseous mixture[J]. Pramana, 2021, 95(2): 62. DOI: 10.1007/s12043-021-02090-4. [23] WU K Y, REN C H, JIA B Y, et al. Spatial-temporal evolutions of surface discharge patterns generated on dielectric target interacted with a plasma jet[J]. Plasma Process Polym, 2019, 16(10): e1900073. DOI: 10.1002/ppap.201900073. [24] LI Q, LI J T, ZHU W C, et al. Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets[J]. Appl Phys Lett, 2009, 95(14): 141502. DOI:10.1063/1.3243460. ( |