[1] 蔡宝来.教育信息化2.0时代的课堂变革:实质、理念及场景[J].海南师范大学学报(社会科学版), 2019, 32(4):82-88.DOI:10.16061/j.cnki.cn46-1076/c.2019.04.011. [2] 童莹,沈越泓,魏以民.基于旋转主方向梯度直方图特征的判别稀疏图映射算法[J].物理学报,2019,68(19):95-110. DOI: 10.7498/aps.68.20190224. [3] 洪志恒,陈明,秦玉芳,等.基于可变形部件模型的渔船安全监控系统[J].计算机应用与软件, 2018, 35(2):188-193. DOI: 10.3969/j.issn.1000-386x.2018.02.035. [4] 程耀瑜,丰婧,李树军,等.一种基于Haar和肤色分割算法的人脸检测[J].兵器装备工程学报, 2021, 42(1):254-258. DOI: 10.11809/bqzbgcxb2021.01.046. [5] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[J]. IEEE Trans Pattern Anal Mach Intell, 2020, 42(2):386-397. DOI: 10.1109/TPAMI.2018.2844175. [6] 薛超,于宏志,王景彬.基于卷积神经网络的级联人脸检测[J].中国安防,2017(11):88-91. DOI: 10.3969/j.issn.1673-7873.2017.11.021. [7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2016, Las Vegas, NV, USA. IEEE, 2016: 779-788. DOI: 10.1109/CVPR.2016.91. [8] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, IEEE, 2017: 936-944. DOI: 10.1109/CVPR.2017.106. [9] LEDIG C, THEIS L, HUSZÁR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA. IEEE, 2017: 105-114. DOI: 10.1109/CVPR.2017.19. [10] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv preprint arXiv:1409.1556, 2014. DOI: 10.48550/arXiv.1409.1556. [11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, UT, USA. IEEE, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745. [12] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Salt Lake City, UT, USA, IEEE, 2018: 8759-8768. DOI: 10.1109/CVPR.2018.00913. [13] HE M, LUO H B, HUI B, et al. Fast online multi-pedestrian tracking via integrating motion model and deep appearance model[J]. IEEE Access, 2019, 7: 89475-89486. DOI: 10.1109/ACCESS.2019.2926416. [14] HOSANG J, BENENSON R, SCHIELE B. Learning non-maximum suppression[C] //2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Honolulu, HI, USA, IEEE, 2017: 6469-6477. DOI: 10.1109/CVPR.2017.685. [15] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C] //2017 IEEE International Conference on Computer Vision(ICCV), Venice, Italy, IEEE, 2017: 2999-3007. DOI: 10.1109/ICCV.2017.324. [16] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M] //Computer Vision - ECCV 2016, Cham: Springer International Publishing, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2. [17] WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C] //2017 IEEE International Conference on Image Processing(ICIP), Beijing, China, IEEE, 2018: 3645-3649. DOI: 10.1109/ICIP.2017.8296962. ( |