[1] 李喜孟.无损检测[M].北京:机械工业出版社, 2011. [2] 侯旺,钟立军,张小虎,等.红外目标分割方法研究[J].国防科技大学学报, 2013, 35(2): 173- 178. [3] FAN J L, ZHEN W Z, XIE W X. Suppressed fuzzy c-means clustering algorithm[J]. Pattern Recognit Lett, 2003, 24(9/10): 1607-1612. DOI: 10.1016/S0167-8655(02)00401-4. [4] HUNG W L, YANG M S, CHEN D H. Parameter selection for suppressed fuzzy c-means with an application to MRI segmentation[J]. Pattern Recognit Lett, 2006, 27(5): 424-438. DOI: 10.1016/j.patrec.2005.09.005. [5] 朱占龙,刘永军,赵战民,等.用于分割无损检测图像的改进的抑制式模糊C均值聚类算法[J].仪器仪表学报, 2019, 40(8): 110- 118. DOI: 10.19650/j.cnki.cjsi.J1905078. [6] LIU Y, HOU T, LIU F. Improving fuzzy c-means method for unbalanced dataset[J]. Electron Lett, 2015, 51(23): 1880-1882. DOI: 10.1049/el.2015.1541. [7] NOORDAM J C, VAN DEN BROEK W H A M, BUYDENS L M C. Multivariate image segmentation with cluster size insensitive Fuzzy C-means[J]. Chemom Intell Lab Syst, 2002, 64(1): 65-78. DOI: 10.1016/S0169-7439(02)00052-7. [8] JI Z X, XIA Y, CHEN Q, et al. Fuzzy c-means clustering with weighted image patch for image segmentation[J]. Appl Soft Comput, 2012, 12(6): 1659-1667. DOI: 10.1016/j.asoc.2012.02.010. [9] LIU Y L, WANG J, CHEN X, et al. A robust and fast non-local means algorithm for image denoising[J]. J Comput Sci & Tech, 2008, 23(2): 270-279. DOI: 10.1007/s11390-008-9129-8. [10] 朱占龙,王军芬.基于自适应模糊C均值与后处理的图像分割算法[J].激光与光电子学进展, 2018, 55(1): 213-222. DOI: 10.3788/lop55.011004. [11] 陆海青,葛洪伟.自适应灰度加权的鲁棒模糊C均值图像分割[J].智能系统学报, 2018, 13(4): 584-593. DOI: 10.11992/tis.201701008. [12] 潘金艳,高朋,高云龙,等.基于可靠性的鲁棒模糊聚类[J].控制理论与应用, 2021, 38(4): 516-528. DOI: 10.7641/CTA.2020.00480. ( |