[1] KUMARAVEL V, IMAM M D, BADRELDIN A, et al. Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts [J]. Catalysts, 2019, 9(3):276. DOI: 10.3390/catal9030276. [2] LOEB S K, ALVAREZ P J J, BRAME J A, et al. The technology horizon for photocatalytic water treatment: sunrise or sunset? [J]. Environ Sci Technol, 2019, 53(6): 2937-2947. DOI: 10.1021/acs.est.8b05041. [3] JIN Z, ZENG S, CAO C, et al. Impacts of pollution abatement projects on happiness: An exploratory study in China [J]. J Clean Prod, 2020, 274:122869. DOI: 10.1016/j.jclepro.2020.122869. [4] TAKATA T, JIANG J Z, SAKATA Y, et al. Photocatalytic water splitting with a quantum efficiency of almost unity [J].Nature, 2020, 581(7809): 411-414. DOI: 10.1038/s41586-020-2278-9. [5] YU J X, CHANG S F, SHI L, et al. Single-crystalline Bi2YO4Cl with facet-aided photocarrier separation for robust solar water splitting [J]. ACS Catal, 2023, 13(6): 3854-3863. DOI: 10.1021/acscatal.2c05768. [6] LEE D E, DANISH M, ALAM U, et al. Review on inorganic and polymeric materials-coordinated metal-organic-framework photocatalysts for green hydrogen evolution [J]. J Energy Chem, 2024, 92: 322-356. DOI: 10.1016/j.jechem.2023.12.029. [7] BIE C B, WANG L X, YU J G. Challenges for photocatalytic overall water splitting [J]. Chem, 2022, 8(6): 1567-1574. DOI: 10.1016/j.chempr.2022.04.013. [8] MORIKAWA T, SATO S, SEKIZAWA K, et al. Molecular catalysts immobilized on semiconductor photosensitizers for proton reduction toward visible-light-driven overall water splitting [J]. Chemsuschem, 2019, 12(9): 1807-1824. DOI: 10.1002/cssc.201900441. [9] WANG L, XU H X. Two-dimensional conjugated polymer frameworks for solar fuel generation from water [J]. Prog Polym Sci, 2023, 145:101734. DOI: 10.1016/j.progpolymsci.2023.101734. [10] WANG Z, LI C, DOMEN K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting [J]. Chem Soc Rev, 2019, 48(7): 2109-2125. DOI: 10.1039/c8cs00542g. [11] WEI Z S, MOGAN T R, WANG K L, et al. Morphology-governed performance of multi-dimensional photocatalysts for hydrogen generation [J]. Energies, 2021, 14(21):7223. DOI: 10.3390/en14217223. [12] ACAR C, DINCER I, NATERER G F. Review of photocatalytic water-splitting methods for sustainable hydrogen production [J]. Int J Energy Res, 2016, 40(11): 1449-1473. DOI: 10.1002/er.3549. [13] LU P, LIU K, LIU Y, et al. Heterostructure with tightly-bound interface between In2O3 hollow fiber and ZnIn2S4 nanosheet toward efficient visible light driven hydrogen evolution [J]. Appl Catal B-Environ, 2024, 345:123697. DOI: 10.1016/j.apcatb.2024.123697. [14] TAHIR M, TASLEEM S, TAHIR B. Recent development in band engineering of binary semiconductor materials for solar driven photocatalytic hydrogen production [J]. Int J Hydrog Energy, 2020, 45(32): 15985-16038. DOI: 10.1016/j.ijhydene.2020.04.071. [15] DENG F, PENG J L, LI X B, et al. Metal sulfide-based Z-scheme heterojunctions in photocatalytic removal of contaminants, H2 evolution and CO2 reduction: Current status and future perspectives [J]. J Clean Prod, 2023, 416:137957. DOI: 10.1016/j.jclepro.2023.137957. [16] LIU Y, HUANG D L, CHENG M, et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting [J]. Coord Chem Rev, 2020, 409:213220. DOI: 10.1016/j.ccr.2020.213220. [17] LIN L, REN W, WANG C, et al. Crystalline carbon nitride semiconductors prepared at different temperatures for photocatalytic hydrogen production [J]. Appl Catal B-Environ, 2018, 231: 234-241. DOI: 10.1016/j.apcatb.2018.03.009. [18] WANG S D, XIE Z P, ZHU D, et al. Efficient photocatalytic production of hydrogen peroxide using dispersible and photoactive porous polymers [J]. Nat Commun, 2023, 14(1):6891. DOI: 10.1038/s41467-023-42720-6. [19] ZHAO C X, CHEN Z P, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting [J]. Adv Mater, 2020, 32(28):1907296. DOI: 10.1002/adma.201907296. [20] ZHANG J K, YU Z B, GAO Z, et al. Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production [J]. Angew Chem Int Ed, 2017, 56(3): 816-820. DOI: 10.1002/anie.201611137. [21] PAN J, DONG Z, WANG B, et al. The enhancement of photocatalytic hydrogen production via Ti3+self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction [J]. Appl Catal B-Eeviron, 2019, 242: 92-99. DOI: 10.1016/j.apcatb.2018.09.079. [22] SINGH R, DUTTA S. A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts [J]. Fuel, 2018, 220: 607-620. DOI: 10.1016/j.fuel.2018.02.068. [23] YUAN Y-J, CHEN D Q, YU Z-T, et al. Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production [J]. J Mater Chem A, 2018, 6(25): 11606-11630. DOI: 10.1039/c8ta00671g. [24] BAI J X, CHEN W L, SHEN R C, et al. Regulating interfacial morphology and charge-carrier utilization of Ti3C2 modified all-sulfide CdS/ZnIn2S4 S-scheme heterojunctions for effective photocatalytic H2 evolution [J]. J Mater Sci Technol, 2022, 112: 85-95. DOI: 10.1016/j.jmst.2021.11.003. [25] LIU N, YU H, LIU Y B, et al. A novel hierarchical S-scheme heterojunction of 0D/3D Zn0.5Cd0.5S nanoparticles/hollow micro-flower MoS2 for improved photocatalytic hydrogen evolution [J]. Appl Surf Sci, 2023, 632:157579. DOI: 10.1016/j.apsusc.2023.157579. [26] XIAO Q, YANG T T, GUO X, et al. S-scheme heterojunction constructed by ZnCdS and CoWO4 nano-ions promotes photocatalytic hydrogen production [J]. Surf Interfaces, 2023, 43:103577. DOI: 10.1016/j.surfin.2023.103577. [27] LIU M M, LI H X, LIU S J, et al. Tailoring activation sites of metastable distorted IT'-phase MoS2 by Ni doping for enhanced hydrogen evolution [J]. Nano Res, 2022, 15(7): 5946-5952. DOI:10.1007/s12274-022-4267-9. [28] FAN X B, YU S, HOU B, et al. Quantum dots based photocatalytic hydrogen evolution [J]. Isr J Chem, 2019, 59(8): 762-773. DOI: 10.1002/ijch.201900029. [29] HAO X Q, JIN Z L, YANG H, et al. Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution [J]. Appl Catal B-Environ, 2017, 210: 45-56. DOI: 10.1016/j.apcatb.2017.03.057. [30] ZHANG J J, ZHAO Y, QI K Z, et al. CuInS2 quantum-dot-modified g-C3N4 S-scheme heterojunction photocatalyst for hydrogen production and tetracycline degradation [J]. J Mater Sci Technol, 2024, 172: 145-155. DOI: 10.1016/j.jmst.2023.06.042. [31] HUANG Z Y, SUN P F, ZHANG H Z, et al. Solar-driven highly effective biomass-derived alcohols C-C coupling integrated with H2 Production by CdS quantum dots modified Zn2In2S5 nanosheets [J]. ACS Catal, 2024, 14(7): 4581-4592. DOI: 10.1021/acscatal.3c05826. [32] BEN ALI M, JO W K, ELHOUICHET H, et al. Reduced graphene oxide as an efficient support for CdS-MoS2 heterostructures for enhanced photocatalytic H2 evolution [J]. Int J Hydrog Energy, 2017, 42(26): 16449-16458. DOI: 10.1016/j.ijhydene.2017.05.225. [33] PAREEK A, KIM H G, PAIK P, et al. Nano-architecture based photoelectrochemical water oxidation efficiency enhancement by CdS photoanodes [J]. Mater Res Express, 2017, 4(2):026203. DOI:10.1088/2053-1591/aa5c93. [34] WANG X T, LV R, WANG K. Synthesis of ZnO@ZnS-Bi2S3 core-shell nanorod grown on reduced graphene oxide sheets and its enhanced photocatalytic performance [J]. J Mater Chem A, 2014, 2(22): 8304-8313. DOI:10.1039/c4ta00696h. [35] WANG J, SHI Y X, SUN H R, et al. Fabrication of Bi4Ti3O12/ZnIn2S4 S-scheme heterojunction for achieving efficient photocatalytic hydrogen production [J]. J Alloy Compd, 2023, 930:167450. DOI: 10.1016/j.jallcom.2022.167450. [36] BIE C B, FU J W, CHENG B, et al. Ultrathin CdS nanosheets with tunable thickness and efficient photocatalytic hydrogen generation [J]. Appl Surf Sci, 2018, 462: 606-614. DOI: 10.1016/j.apsusc.2018.08.130. [37] XIE W J, LI X, ZHANG F J. Mo-vacancy induced high performance for photocatalytic hydrogen production over MoS2 nanosheets cocatalyst [J]. Chem Phys Lett, 2020, 746:137276. DOI: 10.1016/j.cplett.2020.137276, [38] FAN H T, JIN Y J, LIU K C, et al. One-step MOF-templated strategy to fabrication of Ce-doped ZnIn2S4 tetrakaidecahedron Hollow Nanocages as an efficient photocatalyst for hydrogen evolution [J]. Adv Sci, 2022, 9(9):2104579. DOI: 10.1002/advs.202104579. [39] ZHANG P, YIN X, ZHANG D G, et al. MOF templated to construct hierarchical ZnIn2S4-In2S3 hollow nanotube for enhancing photocatalytic performance [J]. Chem Eng J, 2023, 458:141394. DOI: 10.1016/j.cej.2023.141394. [40] SHEN R C, ZHANG L P, CHEN X Z, et al. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic junction for efficient photocatalytic H2 evolution [J]. Appl Catal B-Environ, 2020, 266:118619. DOI: 10.1016/j.apcatb.2020.118619. [41] ZHANG W J, ZHAO S S, XING Y P, et al. Sandwich-like P-doped h-BN/ZnIn2S4 nanocomposite with direct Z-scheme heterojunction for efficient photocatalytic H2 and H2O2 evolution [J]. Chem Eng J, 2022, 442:136151. DOI: 10.1016/j.cej.2022.136151. [42] HU Y, HAO X Q, CUI Z W, et al. Enhanced photocarrier separation in conjugated polymer engineered CdS for direct Z-scheme photocatalytic hydrogen evolution [J]. Appl Catal B-Environ, 2020, 260:118131. DOI: 10.1016/j.apcatb.2019.118131. [43] SHI Z, JIN W, SUN Y H, et al. Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production [J]. Chin J Struct Chem, 2023, 42(12):100201. DOI: 10.1016/j.cjsc.2023.100201. [44] JIANG X, FAN D, YAO X T, et al. Highly efficient flower-like ZnIn2S4/CoFe2O4 photocatalyst with p-n type heterojunction for enhanced hydrogen evolution under visible light irradiation [J]. J Colloid Interf Sci, 2023, 641: 26-35. DOI: 10.1016/j.jcis.2023.03.055. [45] WANG X P, JIN Z L, LI X. Monoclinic β-AgVO3 coupled with CdS formed a 1D/1D p-n heterojunction for efficient photocatalytic hydrogen evolution [J]. Rare Met, 2023, 42(5): 1494-1507. DOI: 10.1007/s12598-022-02183-y. [46] CHEN K Y, SHI Y X, SHU P, et al. Construction of core-shell FeS2@ZnIn2S4 hollow hierarchical structure S-scheme heterojunction for boosted photothermal-assisted photocatalytic H2 production [J]. Chem Eng J, 2023, 454:140053. DOI: 10.1016/j.cej.2022.140053. [47] YANG W X, MA G Z, FU Y, et al. Rationally designed Ti3C2 MXene@TiO2/CuInS2 Schottky/S-scheme integrated heterojunction for enhanced photocatalytic hydrogen evolution [J]. Chem Eng J, 2022, 429:132381. DOI: 10.1016/j.cej.2021.132381. [48] LI S S, WANG L, LI Y D, et al. Novel photocatalyst incorporating Ni-Co layered double hydroxides with P-doped CdS for enhancing photocatalytic activity towards hydrogen evolution [J]. Appl Catal B-Environ, 2019, 254: 145-155. DOI: 10.1016/j.apcatb.2019.05.001. [49] CHAVA R K, SON N, KANG M. Controllable oxygen doping and sulfur vacancies in one dimensional CdS nanorods for boosted hydrogen evolution reaction [J]. J Alloy Compd, 2021, 873:159797. DOI: 10.1016/j.jallcom.2021.159797 [50] WANG Y J, CHEN J, LIU L M, et al. Novel metal doped carbon quantum dots/CdS composites for efficient photocatalytic hydrogen evolution [J]. Nanoscale, 2019, 11(4): 1618-1625. DOI: 10.1039/c8nr05807e. [51] ZHOU D X, XUE X D, WANG X, et al. Ni, In co-doped ZnIn2S4 for efficient hydrogen evolution: Modulating charge flow and balancing H adsorption/desorption [J]. Appl Catal B-Environ, 2022, 310:121337. DOI: 10.1016/j.apcatb.2022.121337. [52] SUN T, LI C X, BAO Y P, et al. S-scheme MnCo2S4/g-C3N4 heterojunction photocatalyst for H2 production [J]. Acta Phys Chim Sin, 2023, 39(6):112121. DOI: 10.3866/PKU.WHXB202212009. [53] RAN J R, ZHANG H P, FU S J, et al. NiPS3 ultrathin nanosheets as versatile platform advancing highly active photocatalytic H2 production [J]. Nat Commun, 2022, 13(1):4600. DOI: 10.1038/s41467-022-32256-6. [54] XIN X, LI Y K, ZHANG Y Z, et al. Large electronegativity differences between adjacent atomic sites activate and stabilize ZnIn2S4 for efficient photocatalytic overall water splitting [J]. Nat Commun, 2024, 15(1):337. DOI: 10.1038/s41467-024-44725-1. [55] XIONG Z, HOU Y D, YUAN R S, et al. Hollow NiC2S4 nanospheres as a cocatalyst to support ZnIn2S4 nanosheets for visible-light-driven hydrogen production [J]. Acta Phys Chim Sin, 2022, 38(7):2111021. DOI: 10.3866/PKU.WHXB202111021. [56] ZHANG Y Z, ZHOU W, TANG Y, et al. Unravelling unsaturated edge S in amorphous NiSx for boosting photocatalytic H2 evolution of metastable phase CdS confined inside hydrophilic beads [J]. Appl Catal B-Environ, 2022, 305:121055. DOI: 10.1016/j.apcatb.2021.121055. [57] TAYYAB M, LIU Y J, MIN S X, et al. Simultaneous hydrogen production with the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires [J]. Chinese J Catal, 2022, 43(4): 1165-1175. DOI: 10.1016/S1872-2067(21)63997-9. ( |