[1] 曲昭伟, 郑岩, 吕廷杰, QU Zhao-wei, ZHENG Yan, LU Ting-jie. 基于聚类实现客户行为分析 [J]. 东北师大学报(自然科学版) 2006.doi:10.3321/j.issn:1000-1832.2006.02.005 [2] HAN Jianwei, KAMBR M. Data Mining Concepts and Techniques [M]. 北京:高等教育出版社 2001. [3] HAN E H, KARYPIS G, UMARV K. Hypergraph based clustering in high-dimensional data sets:A summary of results [J]. IEEE Computer Society Technical Committee on Data Engineering 1998, 21(01). [4] BERCHTHOLD A, KEIM D, KRIEGEL H-P. The X-Tree:An index structure for high-dimensional data [A]. Bombay, India 1996. [5] BECKMANN N, KRIEGEL H-P, SCHNEIDER R. The R-tree:An efficient and robust access method for points and Rectangles [A]. Atlantic City 1990. [6] Bouguettaya A.. On-line clustering [J]. IEEE Transactions on Knowledge and Data Engineering 1996, 2(2). [7] KAUFAN L, ROUSSEEUW P J. Finding groups in data:an introduction to cluster analysis [M]. New York:John Wiley and Sons, Inc 1990. [8] ZHANG T, RAMAKRISHNAN R, LIVNY M. An efficient data clustering method for very large databases [A]. Montreal, Canada 1996. [9] GUHA S, RASTOGI R, SHIM K. Cure:An efficient clustering algorithm for large database [A]. Seattle, Washington 1998. [10] ESTER M, KRIEGEL HP, SANDER J. A density based algorithm for discovering clusters in large spatial databases with noise [A]. Portland, Oregon, USA 1996. [11] ANKERST M, BREUING M M, KRIEGEL HP. OPTICS:Ordering points to identify the clustering structure [A]. Philadelphia, PA, USA 1999. [12] KARYPIS G, HAN E-H, KUMAR V. A hierarchical clustering algorithm using dynamic modeling [J]. IEEE Transaction on Computer 1999, 5(03). [13] ESTER M, KRIEGEL H P, SANDER J. Incremental clustering for mining in a data warehouse environment [M]. New York 1998. [14] KRIEGEL HP, GOTLIBOVICH I. Incremental OPTICS:Efficient computation of updates in a hierarchical cluster ordering [J]. Lecture Notes in Computer Science 2003, 2737. [15] ESTER M, WITTMAN R. Incremental generalization for mining in a data warehousing environment [A]. Valencia, Spain 1998. |