河北大学学报(自然科学版) ›› 2018, Vol. 38 ›› Issue (6): 640-647.DOI: 10.3969/j.issn.1000-1565.2018.06.013

• • 上一篇    下一篇

托攻击与推荐系统安全

田俊峰,蔡红云   

  • 收稿日期:2018-09-04 出版日期:2018-11-25 发布日期:2018-11-25
  • 通讯作者: 蔡红云(1980—),女,河北定兴人,河北大学副教授,主要从事可信计算和推荐系统安全研究.E-mail:chy_hbu@126.com
  • 作者简介:田俊峰(1965—),男,河北蠡县人,河北大学教授,博士生导师,主要从事网络安全和可信计算研究. E-mail:tjf@hbu.cn
  • 基金资助:
    河北省自然科学基金重点资助项目(F2016201244);河北省高等学校科学技术研究项目(ZD2015088;ZD2016043)

Shilling attacks and security of recommender systems

TIAN Junfeng, CAI Hongyun   

  1. School of Cyber Security and Computer, Hebei University, Baoding 071002, China
  • Received:2018-09-04 Online:2018-11-25 Published:2018-11-25

摘要: 作为一种应对“信息过载”问题的有效手段,协同过滤推荐系统被广泛应用到诸多领域. 然而托攻击的存在严重影响了推荐系统的推荐质量,因此如何保障推荐系统不受托攻击的影响已经成为推荐系统安全领域的研究热点. 本文首先介绍托攻击产生的动机及分类,然后对推荐系统中的托攻击检测技术和鲁棒推荐算法的现状进行分析,最后对推荐系统安全领域的未来发展趋势进行了展望.

关键词: 推荐系统, 协同过滤, 托攻击, 攻击检测, 鲁棒推荐

Abstract: As an effective solution for solving the problem of information overload, collaborative recommender systems have been widely applied to many fields. However, the occurrence of shilling attacks has seriously affected the quality of recommendation. Therefore, how to protect recommender systems against shilling attacks has become hotspot issue in recommender systems. This paper first introduces the motivation of shilling attacks and features of various attack models, and then analyzes the state of the art in shilling attacks detection techniques and robust collaborative recommendation algorithms in detail. Finally, the future development and research directions are discussed.

Key words: recommender systems, collaborative filtering, shilling attacks, shilling attack detection, robust recommendation

中图分类号: