[1] AKHIL P V, SHELBI JOSEPH. A survey of recommender system types and its classification [J]. International Journal of Advanced Research in Computer Science, 2017,8(9): 486-491. DOI:10.26483/ijarcs.v8i9.5017. [2] KUNAVER M, POŽRL T. Diversity in recommender systems-A survey[J]. Knowledge-Based Systems, 2017, 123:154-162. DOI: 10.1016/j.knosys.2017.02.009. [3] YIN H, ZHOU X F, CUI B, et al. Adapting to user interest drift for POI recommendation [J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(10): 2566-2581. DOI:10.1109/tkde.2016.2580511. [4] GUNES I, KALELI C, BILGE A, et al. Shilling attacks against recommender systems: a comprehensive survey [J]. Artificial Intelligence Review, 2014, 42(4): 767-799. doi:10.1007/s10462-012-9364-9. [5] YANG L, HUANG W, NIU X. Defending shilling attacks in recommender systems using soft co-clustering[J]. Iet Information Security, 2017, 11(6):319-325. DOI: 10.1049/iet-ifs.2016.0345. [6] 2014-Nineteen companies found guilty of writing fake consumer reviews [EB/OL].http://www.heralddeparis.com/nineteen-companies-found-guilty-of-writing-fake-consumer-reviews/232920. [7] HURLEY N, CHENG Z, ZHANG M. Statistical attack detection [C] // The third ACM conference on Recommender systems, ACM, 2009: 149-156. DOI:10.1145/1639714.1639740. [8] 伍之昂, 王有权, 曹杰. 推荐系统托攻击模型与检测技术[J]. 科学通报, 2014,59(7): 551-560. WU Z A, WANG Y Q, CAO J. A survey on shilling attack models and detection techniques for recommender systems[J]. Chinese Science Bulletin, 2014,59(7): 551-560. [9] KAUR P, GOEL S. Shilling attack models in recommender system [C] // International Conference on Inventive Computation Technologies, IEEE, 2017:1-5. DOI:10.1109/INVENTIVE.2016.7824865. [10] RICCI F, ROKACH L, SHAPIRA B, et al. Recommender systems handbook [M]. Springer, New York, USA, 2015. DOI:10.1007/978-1-4899-7637-6. [11] LAM S K, RIEDI J. Shilling recommender systems for fun and profit [C] // International Conference on World Wide Web, ACM, 2004: 393-402. DOI:10.1145/988672.988726. [12] WILLIAMS C A, MOBASHER B, BURKE R. Defending recommender systems: detection of profile injection attacks [J]. Service Oriented Computing & Applications, 2007, 1(3): 157-170. DOI:10.1007/s11761-007-0013-0. [13] MOBASHER B, BURKE R, BHAUMIK R, et al. Effective attack models for shilling item-based collaborative filtering system [C] // Proceedings of the Webkdd Workshop, 2005. [14] SEMINARIO C E, WILSON D C. Assessing impacts of a power user attack on a matrix factorization collaborative recommender system [C] // Florida Artificial Intelligence Research Society Conference, 2014: 81-86. [15] SEMINARIO C E, WILSON D C. Attacking item-based recommender systems with power items [C] // ACM Conference on Recommender Systems, 2014: 57-64. DOI:10.1145/2645710.2645722. [16] WILLIAMS C, MOBASHER B, BURKE R, et al. Detection of obfuscated attacks in collaborative recommender systems [C] // Proceedings of the 17th European Conference on Artifical Intelligence, 2006:1-5. [17] SU X, ZHENG H, CHEN Z. Finding group shilling in recommendation system [C] // International Conference on World Wide Web. ACM, 2005: 960-961. DOI: 10.1145/1062745.1062818. [18] WANG Y Q, WU Z A, CAO J, et al. Towards a tricksy group shilling attack model against recommender systems [C] //Advanced Data Mining and Applications, Springer Berlin Heidelberg, 2012: 675-688. DOI: 10.1007/978-3-642-35527-1_56. [19] BURKE R, MOBASHER B, WILLIAMS C, et al. Classification features for attack detection in collaborative recommender systems[C] // ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2006: 542-547. DOI:10.1145/1150402.1150465. [20] 伍之昂,庄毅,王有权,等. 基于特征选择的推荐系统欺诈攻击检测算法[J].电子学报, 2012,40(8): 1687-1693. WU Z A, ZHUANG Y, WANG Y Q, et al. Shilling attack detection based on features selection for recommendation systems[J]. Acta Electronica Sinica, 2012, 40(8): 1687-1693. [21] 李文涛,高旻,李华,等.一种基于流行度分类特征的欺诈攻击检测算法[J].自动化学报, 2015,41(9): 1563-1575. DOI: 10.16383/j.aas.2015.c150040. LI W T, GAO M, LI H, et al. An shilling attack detection algorithm based on popularity degree features [J].Acta Automatica Sinica, 2015,41(9): 1563-1575. DOI: 10.16383/j.aas.2015.c150040. [22] ZHANG F Z, ZHOU Q Q. HHT-SVM: An online method for detecting profile injection attacks in collaborative recommender systems [J]. Knowledge-Based Systems, 2014, 65: 96-105. DOI:10.1016/j.knosys.2014.04.020. [23] YANG Z, LIN X, CAI Z, et al. Re-scale AdaBoost for attack detection in collaborative filtering recommender systems [J]. Knowledge-Based Systems, 2016(100): 74-88. DOI:10.1016/j.knosys.2016.02.008. [24] ZHANG F Z, CHEN H H. An ensemble method for detecting shilling attacks based on ordered item sequences [J]. Security and Communication Networks, 2016, 9(7):680-696. DOI:10.1002/sec.1389. [25] ZHOU Q. Supervised approach for detecting average over popular items attack in collaborative recommender systems [J]. IET Information Security, 2016, 10(3): 134-141. DOI:10.1049/iet-ifs.2015.0067. [26] ZHOU W, WEN J, XIONG Q, et al. SVM-TIA a shilling attack detection method based on SVM and target item analysis in recommender systems [J]. Neurocomputing, 2016, 210(C): 197-205. DOI:10.1016/j.neucom.2015.12.137. [27] 周全强, 张付志, 刘文远. 基于仿生模式识别的未知推荐攻击检测[J]. 软件学报, 2014(11): 2652-2665. DOI: 10.13328/j.cnki.jos.004550. ZHOU Q Q, ZHANG F Z, LIU W Y. Detecting unknown recommendation attacks based on bionic pattern recognition [J]. Journal of Software, 2014(11): 2652-2665. DOI: 10.13328/j.cnki.jos.004550. [28] CAO J, WU Z, MAO B, et al. Shilling attack detection utilizing semi-supervised learning method for collaborative recommender system [J]. World Wide Web-internet & Web Information Systems, 2013, 16(5-6): 729-748. DOI:10.1007/s11280-012-0164-6. [29] WU Z, WU J, CAO J, et al. HySAD: a semi-supervised hybrid shilling attack detector for trustworthy product recommendation [C] // 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012: 985-993. DOI:10.1145/2339530.2339684. [30] ZHANG L, YUAN Y, WU Z, et al., Semi-SGD: Semi-supervised learning based spammer group detection in product reviews [C] // Fifth International Conference on Advanced Cloud and Big Data, IEEE, 2017: 368-373. DOI:10.1109/CBD.2017.70. [31] ZHANG L, WU Z, CAO J. Detecting spammer groups from product reviews: A partially supervised learning model [J]. IEEE Access, 2018,6: 2559-2568. DOI:10.1109/ACCESS.2017.2784370. [32] MEHTA B, NEJDL W. Attack resistant collaborative filtering [C] // International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2008: 75-82. DOI:10.1145/1390334.1390350. [33] MEHTA B, NEJDL W. Unsupervised strategies for shilling detection and robust collaborative filtering [J]. User Modeling and User-Adapted Interaction, 2009, 19(1-2): 65-97. DOI:10.1007/s11257-008-9050-4. [34] BRYAN K, O’MAHONY M. Unsupervised retrieval of attack profiles in collaborative recommender systems [C] // ACM Conference on Recommender Systems, ACM, 2008: 155-162. DOI:10.1145/1454008.1454034. [35] LEE J, ZHU D. Shilling attack detection—A new approach for a trustworthy recommender system [J]. Informs J Comput, 2012, 24: 117-131. DOI:10.1287/ijoc.1100.0440. [36] ZOU J, FEKRI F. A belief propagation approach for detecting shilling attacks in collaborative filtering [C] // ACM International Conference on Conference on Information & Knowledge Management. ACM, 2013: 1837-1840. DOI:10.1145/2505515.2507875 [37] ZHANG Z, KULKARNI S R. Graph-based detection of shilling attacks in recommender systems [C] // IEEE International Workshop on Machine Learning for Signal Processing(MLSP), IEEE, 2013: 1-6. DOI:10.1109/MLSP.2013.6661953. [38] ZHANG Z, KULKARNI S R. Detection of shilling attacks in recommender systems via spectral clustering [C] // 17th International Conference on Information Fusion(FUSION), IEEE, 2014: 1-8. [39] ZHANG Y, TAN Y, ZHANG M, et al. Catch the black sheep: unified framework for shilling attack detection based on fraudulent action propagation [C] // 24th International Conference on Artificial Intelligence, AAAI Press, 2015: 2408-2414. [40] YANG Z, CAI Z, GUAN X. Estimating user behavior toward detecting anomalous ratings in rating systems [J]. Knowledge-Based Systems, 2016, 111: 144-158. DOI:10.1016/j.knosys.2016.08.011. [41] YANG Z, CAI Z, YUAN Y. Spotting anomalous ratings for rating systems by analyzing target users and items [J]. Neurocomputing, 2017, 240: 25-46. DOI:10.1016/j.neucom.2017.02.052. [42] ZHANG F, ZHANG Z, ZHANG P, et al. UD-HMM: An unsupervised method for shilling attack detection based on hidden Markov model and hierarchical clustering [J]. Knowledge-Based Systems, 2018, 148: 146-166. DOI:10.1016/j.knosys.2018.02.032. [43] O’MAHONY M P, HURLEY N J, SILVERSTRE G C M. An evaluation of neighbourhood formation on the performance of collaborative filtering [J]. Artificial Intelligence Review, 2004, 21(3-4): 215-228. DOI:10.1023/b:aire.0000036256.39422.25. [44] 杜永萍, 黄亮, 何明. 融合信任计算的协同过滤推荐方法[J]. 模式识别与人工智能, 2014, 27(5): 417-425. DOI: 10.16451/j.cnki.issn1003-6059.2014.05.004. DU Y P, HUANG L, HE M. Collaborative filteration recommendation algorithm based on trust computation[J]. PR & AI, 2014, 27(5): 417-425. DOI: 10.16451/j.cnki.issn1003-6059.2014.05.004. [45] 贾冬艳, 张付志. 基于双重邻居选取策略的协同过滤推荐算法[J]. 计算机研究与发展, 2013, 50(5): 1076-1084. JIA D Y, ZHANG F Z. A collaborative filtering recommendation algorithm based on double neighbor choosing strategy[J]. Journal of Computer Research and Development, 2013, 50(5): 1076-1084. [46] 黄世平, 黄晋, 陈健,等. 自动建立信任的防攻击推荐算法研究[J]. 电子学报, 2013, 41(2): 382-387. HUANG S P, HUANG J, CHEN J, et al. Anti-attack recommender algorithm based on automatic trust establishment[J]. Acta Electronica Sinica, 2013, 41(2): 382-387. [47] YI H, ZHANG F. A robust collaborative recommendation algorithm based on k-distance and Tukey M-estimator [J]. China Communications, 2014, 11(9): 119-130. DOI:10.1109/CC.2014.6969776. [48] YI H, ZHANG F. Robust recommendation method based on suspicious users measurement and multidimensional trust [J]. Journal of Intelligent Information Systems, 2016, 46(2): 349-367. DOI:10.1007/s10844-015-0375-2. [49] MEHTA B, HOFMANN T, NEJDL W. Robust collaborative filtering[C] // Proceedings of the 2007 ACM Conference on Recommender Systems, Minneapolis, Minnesota, USA, ACM, 2007: 49-56. DOI:10.1145/1297231.1297240. [50] MEHTA B, HOFMANN T. A survey of attack-resistant collaborative filtering algorithms[J]. Bulletin of the Technical Committee on Data Engineering, 2008, 31(2): 14-22. [51] MEHTA B, NEJDL W. Attack resistant collaborative filtering[C] // Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore. ACM, 2008: 75-82. DOI: 10.1145/1390334.1390350. [52] KARATZOGLOU A, WEIMER M. Quantile matrix factorization for collaborative filtering[C] // 11th International Conference on Electronic Commerce and Web Technologies, Bilbao, Spain, Springer, 2010: 253-264. DOI: 10.1007/978-3-642-15208-5_23. [53] ZHANG F, SUN S, YI H. Robust collaborative recommendation algorithm based on kernel function and welsch reweighted M-estimator[J]. IET Information Security, 2015, 9(5): 257-265. DOI: 10.1049/iet-ifs.2014.0488. [54] 张燕平, 张顺, 钱付兰, 等. 基于用户声誉的鲁棒协同推荐算法[J]. 自动化学报, 2015, 41(5): 1004-1012. DOI:10.16383/j.aas.2015.c140073. ZHANG Y P, ZHANG S, QIAN F L, et al. Robust collaborative recommendation algorithm based on user’s reputation[J]. Acta Automatica Sinica, 2015, 41(5): 1004-1012. DOI:10.16383/j.aas.2015.c140073. [55] YU H T, GAO R B, WANG K, et al. A novel robust recommendation method based on kernel matrix factorization [J]. Journal of Intelligent & Fuzzy Systems, 2017, 32(3):2101-2109. DOI: 10.3233/jifs-161705. [56] 伊华伟, 张付志, 巢进波. 基于模糊核聚类和支持向量机的鲁棒协同推荐算法[J]. 电子与信息学报, 2017, 39(8):1942-1949. YI H W, ZHANG F Z, CHAO J B. Robust collaborative recommendation algorithm based on fuzzy kernel clustering and support vector machine[J]. Journal of Electronics & Information Technology, 2017, 39(8):1942-1949. [57] XU C, ZHANG J, LONG C, et al. Uncovering collusive spammers in Chinese review websites [C] // ACM International Conference on Conference on Information & Knowledge Management, ACM, 2013: 979-988. DOI: 10.1145/2505515.2505700. |