[1] ZOU C F, ZHANG D Q, WAN J F, et al. Using concept lattice for personalized recommendation system design[J]. IEEE Systems Journal, 2015, 11(1):1-10. DOI:10.1109/JSYST.2015.2457244. [2] LIU X J. An improved clustering-based collaborative filtering recommendation algorithm[J].Cluster Computing, 2017, 20(2):1281-1288. DOI:10.1007/s10586-017-0807-6. [3] SHU J B, SHEN X X, LIU H, et al. A content-based recommendation algorithm for learning resources[J]. Multimedia Systems, 2017(1):1-11.DOI: 10.1007/s00530-017-0539-8. [4] XI Y, YUAN Q. Intelligent recommendation scheme of scenic spots based on association rule mining algorithm[C] //International Conference on Robots & Intelligent System, IEEE, 2017. DOI: 10.1109/ICRIS.2017.53. [5] GUO Q J, JI W T, ZHOU R Y. Algorithm study under big data environment of personalized recommendation based on user interest model[C] // IEEE/ACIS International Conference on Computer & Information Science, 2017. DOI: 10.1109/ICIS.2017.7959988. [6] WANG H M, ZHANG P,LU T, et al. Hybrid recommendation model based on incremental collaborative filtering and content-based algorithms[C] // IEEE International Conference on Computer Supported Cooperative Work in Design, 2017. DOI: 10.1109/CSCWD.2017.8066717. [7] SONG M Q. A collaborative filtering recommendation algorithm based on multi-dimensional data filling[C] // IEEE International Conference on Computer & Communications, 2017. DOI: 10.1109/CompComm.2016.7924688. [8] WEI J, HE J H, CHEN K, et al. Collaborative filtering and deep learning based recommendation system for cold start items[J]. Expert Systems with Applications, 2017, 69:29-39. DOI: 10.1016/j.eswa.2016.09.040. [9] SU C,ZHANG B T. A collaborative filtering recommendation algorithm based on weighted SimRank and social trust[C] // International Conference on Materials Science, 2017. DOI:10.1063/1.4982551. [10] SUN B S,DONG L Y. Dynamic model sdaptive yo user interest drift based on cluster and nearest neighbors[J]. IEEE Access, 2017(99):1-1. DOI: 10.1109/ACCESS.2017.2669243. [11] YU C Y, HUANG L P. CluCF: A clustering CF algorithm to address data sparsity problem[J]. Service Oriented Computing and Applications, 2017, 11(1):33-45. DOI: 10.1007/s11761-016-0191-8. [12] 李昆仑,万品哲,张德智.基于改进用户相似性度量和评分预测的协同过滤推荐算法[J].小型微型计算机系统,2018, 39(3): 567-571. DOI:10.3969/j.issn.1000-1220.2018.03.031. [13] 李伟霖,王成良,文俊浩.基于评论与评分的协同过滤算法[J].计算机应用研究,2017,34(2):361-364, DOI: 10.3969/j.issn.1001-3695.2017.02.009. [14] 王余斌, 王成良, 文俊浩. 基于用户评论评分与信任度的协同过滤算法[J].计算机应用研究,2018,35(5):94-97.DOI: 10.3969/j.issn.1001-3695.2018.05.019. [15] 赵文涛,王春春,成亚飞,等.基于用户多属性与兴趣的协同过滤算法[J].计算机应用研究,2016,33(12):3630-3633. DOI: 10.3969/j.issn.1001-3695.2016.12.025. [16] POZO M, CHIKY R, MEZIANE F, et al. Enhancing new user cold-start based on decision trees active learning by ising past warm-users predictions[C] // Conference on Computational Collective Intelligence Technologies and Applications. Springer, Cham, 2017. DOI:10.1007/978-3-319-67074-4_14. [17] FELICIO C Z, PAIXAO K V R, BARCELOS C A Z, et al.Preference like score to cope with cold-start userin recommender systems[C] // IEEE International Conference on Tools with Artificial Intelligence. 2017. DOI: 10.1109/ICTAI.2016.0020. [18] LI B, ZHU X, LI R, et al. Rating knowledge sharing in cross-domain collaborative filtering[J]. IEEE Transactions on Cybernetics, 2017, 45(5):1068-1082. DOI: 10.1109/TCYB.2014.2343982. [19] WU X J, YUAN X J, DUAN C Y, et al. A novel collaborative filtering algorithm of machine learning by integrating restricted Boltzmann machine and trust information[J]. Neural Computing & Applications, 2018(5):1-8. DOI:10.1007/s00521-018-3509-y. [20] LI L, ZHOU Y, XIONG H, et al. Collaborative filtering based on user attributes and user ratings for restaurant recommendation[C] // 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference(IAEAC), IEEE, 2017. DOI: 10.1109/IAEAC.2017.8054493. [21] ZHU J H, MING Q, LI U Y. Trust-distrust-aware point-of-interest recommendation in location-based social network[M] // Wireless Algorithms, Systems, and Applications, Springer, Cham, 2018. DOI: 10.1007/978-3-319-94268-1_58. [22] DANG Y, WANG Z Z, LIU X Z. Design of outdoor recommendation algorithm based on user location[C] // IEEE International Conference on Computer & Communications, IEEE, 2017. DOI:10.1109/CompComm.2016.7925020. [23] 林建辉,严宣辉,黄波.基于SVD与模糊聚类的协同过滤推荐算法[J]. 计算机系统应用, 2016, 25(11):156-163.DOI:10.15888/j.cnki.csa.005474. [24] 袁正午,陈然.基于多层次混合相似度的协同过滤推荐算法[J]. 计算机应用, 2018, 38(3):633-638. DOI: 10.11772/j.issn.1001-9081.2017071718. [25] 郝德华,关维国, 邹林杰,等. 基于Pearson相关系数的快速虚拟网格匹配定位算法[J]. 计算机应用, 2018, 38(3):763-768. DOI: 10.11772/j.issn.1001-9081.2017071760. [26] 刘华锋,景丽萍,于剑.融合社交信息的矩阵分解推荐方法研究综述[J].软件学报, 2018, 29(2):340-362. DOI: 10.13328/j.cnki.jos.005391. [27] LIU H, XU Q, JIN G W, et al. MIMO antenna polynomial weighted average design method of downward-looking array, SAR[J]. International Journal of Antennas and Propagation, 2017:1-18. DOI: 10.1155/2017/3029847. [28] 谢荻帆,杜子芳. 中国电影线上评分系统的改进[J].计算机应用, 2018, 38(4):1218-1222. DOI: CNKI:SUN:JSJY.0.2018-04-051. [29] LIU Y N, LIU D S, XIE H H, et al. A research on the improved slope one algorithm for collaborative filtering[J]. International Journal of Computing Science and Mathematics, 2016, 7(3):245. DOI: 10.1504/IJCSM.2016.077865. |