[1] 陈广生, 曾德慧, 陈伏生, 等. 干旱和半干旱地区灌木下土壤“肥岛”研究进展[J]. 应用生态学报, 2003, 14(12): 2295-2300. DOI: 10.13287/j.1001-9332.2003.0507. [2] 刘学东, 陈林, 杨新国, 等. 荒漠草原2种柠条(Caragana korshinskii)和油蒿(Artemisia ordosica)灌丛土壤养分“肥岛”效应[J]. 西北林学院学报, 2016, 31(4): 26-32. DOI: 10.3969/j.issn.1001-7461.2016.04.05. [3] 苏永中, 赵哈林, 张铜会. 几种灌木、半灌木对沙地土壤肥力影响机制的研究[J]. 应用生态学报, 2002, 13(7): 802-806. DOI: 10.13287/j.1001-9332.2002.0190. [4] SMITH F A, SMITH S E. Tansley review No. 96. Structural diversity in(vesicular)-arbuscular mycorrhizal symbioses[J]. New Phytologist, 1997, 137(3): 373-388. DOI: 10.1046/j.1469-8137.1997.00848.x. [5] MUTHUKUMAR T, UDAIYAN K. Arbuscular mycorrhizas in cycads of southern India[J]. Mycorrhiza, 2002, 12(4): 213-217. DOI: 10.1007/s00572-002-0179-4. [6] RILLIG M C, MAESTRE F T, LAMIT L J. Microsite differences in fungal hyphal length, glomalin, and soil aggregate stability in semiarid Mediterranean steppes[J]. Soil Biology and Biochemistry, 2003, 35(9): 1257-1260. DOI: 10.1016/s0038-0717(03)00185-8. [7] WILLIAMS A, BIRKHOFER K, HEDLUND K. Above- and below-ground interactions with agricultural management: effects of soil microbial communities on barley and aphids[J]. Pedobiologia, 2014, 57(2): 67-74. DOI: 10.1016/j.pedobi.2014.01.004. [8] 王姣姣, 强薇, 刘海跃, 等. 极旱荒漠植物对AM真菌物种多样性的影响[J]. 菌物学报, 2017, 36(7): 861-869. DOI: 10.13346/j.mycosystema.170058. [9] BEVER J D, RICHARDSON S C, LAWRENCE B M, et al. Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism[J]. Ecology Letters, 2009, 12(1): 13-21. DOI: 10.1111/j.1461-0248.2008.01254.x. [10] QIANG W, HE X L, WANG J J, et al. Temporal and spatial variation of arbuscular mycorrhizal fungi under the canopy of Hedysarum scoparium in the northern desert, China[J]. Applied Soil Ecology, 2019, 136: 139-147. DOI: 10.1016/j.apsoil.2019.01.003. [11] 刘海跃, 李欣玫, 张琳琳, 等. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2): 252-260. DOI: 10.17521/cjpe.2017.0138. [12] 毛琳. 资源有效性对植物及其共生丛枝菌根真菌群落的调控机制研究[D]. 兰州: 兰州大学, 2015. [13] DEL MAR ALGUACIL M, LOZANO Z, CAMPOY M J, et al. Phosphorus fertilisation management modifies the biodiversity of AM fungi in a tropical savanna forage system[J]. Soil Biology and Biochemistry, 2010, 42(7): 1114-1122. DOI: 10.1016/j.soilbio.2010.03.012. [14] 张亚敏, 马克明, 曲来叶. 干旱条件下接种AM真菌对小马鞍羊蹄甲幼苗根系的影响[J]. 生态学报, 2017, 37(8): 2611-2619. DOI: 10.5846/stxb201601280209. [15] XUE Z K, HE X L, ZUO Y L. Community composition and catabolic functional diversity of soil microbes affected by Hedysarum scoparium in arid desert regions of northwest China[J]. Arid Land Research and Management, 2020, 34(2): 152-170. DOI: 10.1080/15324982.2019.1637968. [16] BAI C M, HE X L, TANG H L, et al. Spatial distribution of arbuscular mycorrhizal fungi, glomalin and soil enzymes under the canopy of Astragalus adsurgens Pall. in the Mu Us sandland, China[J]. Soil Biology and Biochemistry, 2009, 41(5): 941-947. DOI: 10.1016/j.soilbio.2009.02.010. [17] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. [18] TARAFDAR J C, MARSCHNER H. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus[J]. Soil Biology and Biochemistry, 1994, 26(3): 387-395. DOI: 10.1016/0038-0717(94)90288-7. [19] WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97-107. DOI: 10.1023/A:1004347701584. [20] 贺学礼, 陈烝, 郭辉娟, 等. 荒漠柠条锦鸡儿AM真菌多样性[J]. 生态学报, 2012, 32(10): 3041-3049. DOI: 10.5846/stxb201104270557. [21] SYKOROVA Z, WIEMKEN A, REDECKER D. Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities[J]. Applied and Environmental Microbiology, 2007, 73(17): 5426-5434. DOI: 10.1128/aem.00987-07. [22] EOM A H, HARTNETT D C, WILSON G W T. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie[J]. Oecologia, 2000, 122(3): 435-444. DOI: 10.1007/s004420050050. [23] 杨超, 蔡柏岩. AM真菌对连作作物根系代谢产物影响的研究进展[J]. 中国农学通报, 2018, 34(14): 35-39. [24] 杨海水, 熊艳琴, 王琪, 等. AM真菌物种多样性: 生态功能、影响因素及维持机制[J]. 生态学报, 2016, 36(10): 2826-2832. DOI: 10.5846/stxb201410112001. [25] 李艳红, 李艳凤. 丛枝菌根与土壤碳截获的研究进展[J]. 安徽农业科学, 2019, 47(12): 6-9. DOI: 10.3969/j.issn.0517-6611.2019.12.002. [26] 田学谦, 毛永亚, 王壮, 等. 贵州火龙果丛枝菌根与土壤因子的相关性研究[J]. 分子植物育种, 2018, 16(9): 2966-2978. DOI: 10.13271/j.mpb.016.002966. [27] 刘春卯, 贺学礼, 陈严严, 等. 蒙古沙冬青AM真菌物种多样性与土壤因子的相关性[J]. 河北大学学报(自然科学版), 2015, 35(3): 278-288. DOI: 10.3969/j.issn.1000-1565.2015.03.010. [28] JOHNSON N C, WILSON G W T, WILSON J A, et al. Mycorrhizal phenotypes and the law of the minimum[J]. New Phytologist, 2015, 205(4): 1473-1484. DOI: 10.1111/nph.13172. [29] WIPF D, KRAJINSKI F, TUINEN D, et al. Trading on the arbuscular mycorrhiza market: from arbuscules to ordinary mycorrhizal networks[J]. New Phytologist, 2019, 223(3): 1127-1142. DOI: 10.1111/nph.15775. [30] 贺学礼, 张亚娟, 赵丽莉, 等. 塞北梁地沙蒿根围AM真菌和球囊霉素空间分布特征[J]. 河北大学学报(自然科学版), 2018, 38(3): 268-277. DOI: 10.3969/j.issn.1000-1565.2018.03.007. [31] JANSA J, ERB A, OBERHOLZER H R, et al. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils[J]. Molecular Ecology, 2014, 23(8): 2118-2135. DOI: 10.1111/mec.12706. [32] 蒋胜竞, 刘永俊, 石国玺, 等. 丛枝菌根真菌物种多样性及其群落构建机制研究进展[J]. 生命科学, 2014, 26(2): 169-180. DOI: 10.13376/j.cbls/2014026. [33] 张新璐, 唐明, 陈雪冬, 等. 盐渍化地区刺槐、新疆杨和柽柳林中AM真菌特性及其影响因子[J]. 西北农业学报, 2018, 27(1): 114-123. DOI: 10.7606/j.issn.1004-1389.2018.01.016. [34] KENNEDY N, BRODIE E, CONNOLLY J, et al. Impact of lime, nitrogen and plant species on bacterial community structure in grassland microcosms[J]. Environmental Microbiology, 2004, 6(10): 1070-1080. DOI: 10.1111/j.1462-2920.2004.00638.x. |