河北大学学报(自然科学版) ›› 2020, Vol. 40 ›› Issue (6): 585-590.DOI: 10.3969/j.issn.1000-1565.2020.06.004
孙春雨,李婧,王新占,郭成锁,于威
收稿日期:
2020-04-01
发布日期:
2021-01-10
通讯作者:
国家重点研究发展计划项目(2018YFB1500503-02);河北省自然科学基金资助项目(F2017201101)
作者简介:
孙春雨(1992—),男,河北廊坊人,河北大学在读硕士研究生,主要从事无机钙钛矿纳米晶合成与电致发光二极管制备的研究. E-mail:sunchunyu_hbu@126.com
SUN Chunyu, LI Jing, WANG Xinzhan, GUO Chengsuo, YU Wei
Received:
2020-04-01
Published:
2021-01-10
摘要: 全无机钙钛矿CsPbI3量子点具有发射谱线窄、荧光量子产率高和稳定性强等特点,在红光LEDs和新型太阳电池领域具有广阔的应用前景.本文通过热注入法在正己烷溶剂中合成了CsPbI3 量子点, 并对其结构和光学特性进行表征,结果表明,量子点主要的发光机制是量子限制区自由激子复合.通过改变溶剂的种类(正己烷、甲苯、乙酸乙酯、乙酸甲酯)对量子点的光学特性进行了调整,研究发现随着溶剂极性的增加,发光峰位从615 nm红移至660 nm,这是因为极性溶剂对量子点表面具有修饰作用,通过改变溶液极性实现CsPbI3量子点发光峰位调节的条件为制备波长可调的光电器件提供了一定的实验参考.
中图分类号:
孙春雨,李婧,王新占,郭成锁,于威. CsPbI3量子点在不同极性溶剂的光学特性[J]. 河北大学学报(自然科学版), 2020, 40(6): 585-590.
SUN Chunyu, LI Jing, WANG Xinzhan, GUO Chengsuo, YU Wei. Optical properties of CsPbI3 quantum dots in different polar solvents[J]. Journal of Hebei University(Natural Science Edition), 2020, 40(6): 585-590.
[1] KOUTSELAS I, BAMPOULIS P, MARATOU E, et al. Some unconventional organic inorganic hybrid low-dimensional semiconductors and related light-emitting devices[J]. J Physical Chemistry C, 2011, 115(17): 8475-8483. DOI:10.1021/jp111881b. [2] ZHAO Y, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016, 45(3): 655-689. DOI:10.1039/c4cs00458b. [3] ERA M, MORIMOTO S, TSUTSUI T, et al. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor(C6H5C2H4NH3)2PbI4[J]. Applied Physics Letters, 1994, 65(6): 676-678. DOI:10.1063/1.112265. [4] LIANG D, PENG Y, FU Y, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates[J]. ACS Nano, 2016, 10(7): 6897-6904. DOI:10.1021/acsnano.6b02683. [5] DOCAMPO P, BEIN T. A long-term view on perovskite optoelectronics[J]. Acc Chem Res, 2016, 49(2): 339-346. DOI:10.1021/acs.accounts.5b00465. [6] KIM Y H, CHO H, LEE T W. Metal halide perovskite light emitters[J]. Proceedings of the National Academy of ences of the United States of America, 2016, 113(42): 11694-11702. DOI:10.1073/pnas.1607471113. [7] XING J, YAN F, ZHAO Y, et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles[J]. ACS Nano, 2016, 10(7): 6623-6630. DOI:10.1021/acsnano.6b01540. [8] TAN Z K, MOGHADDAM R S, LAI M L, et al. Bright light-emitting diodes based on organometal halide perovskite[J].Nature Nanotechnology, 2014, 9(9):687. DOI:10.1038/nnano.2014.149. [9] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites(CsPbX3, X=Cl, Br, I): novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters, 2015, 15(6): 3692-3696. DOI:10.1021/nl5048779. [10] LI X M, WU Y, ZHANG S L, et al. Quantum dots: CsPbX3Quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes(adv. funct. mater. 15/2016)[J]. Advanced Functional Materials, 2016, 26(15): 2584. DOI:10.1002/adfm.201670096. [11] JEON N J, NOH J H, YANG W S, et al. Compositional engineering of perovskite materials for high-performance solar cells[J]. Nature, 2015, 517(7535): 476-480. DOI:10.1038/nature14133. [12] SHOAIB M, ZHANG X H, WANG X X, et al. Directional growth of ultralong CsPbBr3 perovskite nanowires for high-performance photodetectors[J]. Journal of the American Chemical Society, 2017, 139(44): 15592-15595. DOI:10.1021/jacs.7b08818. [13] KULBAK M, CAHEN D, HODES G. How important is the organic part of lead halide perovskite photovoltaic cells? Efficient CsPbBr3Cells[J]. The Journal of Physical Chemistry Letters, 2015, 6(13): 2452-2456. DOI:10.1021/acs.jpclett.5b00968. [14] WANG Y, ZHANG T, KAN M, et al. Bifunctional stabilization of all-inorganic α-CsPbI3 perovskite for 17% efficiency photovoltaics[J]. Journal of the American Chemical Society, 2018, 140(39): 12345-12348. DOI:10.1021/jacs.8b07927. [15] TONG G Q, LI H, LI D T, et al. Dual-phase CsPbBr3 -CsPb2Br5 perovskite thin films via vapor deposition for high-performance rigid and flexible photodetectors[J]. Small, 2018, 14(7): 1702523. DOI:10.1002/smll.201702523. [16] SONG J Z, LI J H, LI X M, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides(CsPbX3)[J]. Advanced Materials, 2015, 27(44): 7162-7167. DOI:10.1002/adma.201502567. [17] YASSITEPE E, YANG Z Y, VOZNYY O, et al. Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(47): 8757-8763. DOI:10.1002/adfm.201604580. [18] DAVIS N J, TABACHNYK M, RICHTER J M, et al. Photon reabsorption in mixed CsPbCl3: CsPbI3 perovskite nanocrystal films for light-emitting diodes[J].Physical Chemistry C, 2017,121(7):3790-3796. DOI:10.1021/acs.jpcc.6b12828. [19] ZOU C, HUANG C Y, SANEHIRA E M, et al. Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes[J]. Nanotechnology, 2017, 28(45): 455201. DOI:10.1088/1361-6528/aa8b8b. [20] LIN K, XING J, QUAN L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent[J]. Nature, 2018, 562(7726): 245-248. DOI:10.1038/s41586-018-0575-3. [21] JIANG C B, ZHONG Z M, LIU B Q, et al. Coffee-ring-free quantum dot thin film using inkjet printing from a mixed-solvent system on modified ZnO transport layer for light-emitting devices[J]. Acs Applied Materials & Interfaces, 2016, 8(39): 26162-26168. DOI:10.1021/acsami.6b08679. [22] LI G P, WANG H, ZHANG T, et al. Solvent-polarity-engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light-emitting diodes[J]. Advanced Functional Materials, 2016, 26(46): 8478-8486. DOI:10.1002/adfm.201603734. [23] ZHENG M, LI Y, ZHANG Y J, et al. Solvatochromic fluorescent carbon dots as optic noses for sensing volatile organic compounds[J]. RSC Advances, 2016, 6(86): 83501-83504. DOI:10.1039/C6RA16055G. [24] MEI J J, WANG F, WANG Y P, et al. Energy transfer assisted solvent effects on CsPbBr3 quantum dots[J]. Journal of Materials Chemistry C, 2017, 5(42): 11076-11082. DOI:10.1039/C7TC03351F. [25] LIU F, ZHANG Y, DING C, et al. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield[J]. ACS Nano, 2017, 11(10): 10373-10383. DOI:10.1021/acsnano.7b05442. [26] MEI Q, ZHANG K, GUAN G, et al. Highly efficient photoluminescent graphene oxide with tunable surface properties[J]. Chemical Communications, 2010, 46(39): 7319-7321. DOI:10.1039/C0CC02374D. [27] KONDO S, AMAYA K, SAITO T. In situ optical absorption spectroscopy of annealing behaviours of quench-deposited films in the binary system CsI PbI2[J]. Journal of Physics Condensed Matter, 2003, 15(6): 971-977. DOI:10.1088/0953-8984/15/6/324. [28] SUN C Y, WANG X Z, XU Y M, et al. Physical origins of high photoluminescence quantum yield in α-CsPbI3 nanocrystals and their stability[J]. Applied Surface Science, 2020, 508: 145188. DOI:10.1016/j.apsusc.2019.145188. [29] LIU Q H, WANG Y H, SUI N, et al. Exciton relaxation dynamics in photo-excited CsPbI3 perovskite nanocrystals[J]. Sci Rep, 2016, 6: 29442. DOI:10.1038/srep29442. [30] DIROLL B T, ZHOU H, SCHALLER R D. Low-temperature absorption, photoluminescence, and lifetime of CsPbX3(X = Cl, Br, I)nanocrystals[J]. Advanced Functional Materials, 2018, 28(30): 1800945. DOI:10.1002/adfm.201800945. [31] HAO Y L, GAN Z X, ZHU X B, et al. Emission from trions in carbon quantum dots[J]. The Journal of Physical Chemistry C, 2015, 119(6): 2956-2962. DOI:10.1021/jp5114569. [32] YU W, WANG X Z, LU W B, et al. Spectral characteristics of surface-plasmon-enhanced photoluminescence in nanocrystalline SiC films[J]. Europhys Lett, 2010, 89(4): 47006. DOI:10.1209/0295-5075/89/47006. [33] SWARNKAR A, MARSHALL A R, SANEHIRA E M, et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics[J]. Science, 2016, 354(6308): 92-95. DOI:10.1126/science.aag2700. |
[1] | 王树雨,芦春光,袁秋婷,仇加俊,付跃举,蔡淑珍,傅广生. 新型铁电薄膜在MFIS器件中的应用[J]. 河北大学学报(自然科学版), 2023, 43(4): 364-368. |
[2] | 袁秋婷,郭聪,王树雨,付跃举,董国义. 0-3型纳米复合材料P(VDF-TrFE)xFOM1-x磁电耦合效应[J]. 河北大学学报(自然科学版), 2023, 43(1): 29-34. |
[3] | 薛迎港,孟浩,王照文,赵文泽,刘保亭,代秀红. La0.67Sr0.33MnO3/PbZr0.4Ti0.6O3/La0.67Sr0.33MnO3外延铁电电容器物理性能[J]. 河北大学学报(自然科学版), 2022, 42(4): 364-369. |
[4] | 罗浩,张慧玉,刘红燕,刘海旭,路万兵. SnO2和TiO2薄膜在钙钛矿材料上的原子层沉积工艺[J]. 河北大学学报(自然科学版), 2022, 42(4): 370-375. |
[5] | 张淼,张连水. 第一性原理研究Mn2RhZ(Z=In, Sn, Sb)Heusler合金的磁性形状记忆效应[J]. 河北大学学报(自然科学版), 2019, 39(6): 587-593. |
[6] | 张慧玉,赵静,郭强,刘海旭,丁文革. 掺铒富硅氧化硅发光器件电致发光衰减机制[J]. 河北大学学报(自然科学版), 2017, 37(4): 360-363. |
[7] | 郭双,付念,吴晓琳,王江龙,王淑芳. SrTi0.8Nb0.2O3/Au纳米复合薄膜的制备及热电性能[J]. 河北大学学报(自然科学版), 2017, 37(4): 355-359. |
[8] | 刘冉,葛大勇,高琳洁,査欣雨,王江龙. Mn4+掺杂对CdO多晶电、热输运性能的影响[J]. 河北大学学报(自然科学版), 2017, 37(2): 117-122. |
[9] | 段秀芝,王广新,常春蕊. 磁场下椭圆形量子线中电子与空穴的基态能量[J]. 河北大学学报(自然科学版), 2015, 35(5): 463-467. |
[10] | 焦晓燕,申世刚,邢爽,邱宇,赵英萍. 微波辅助合成一维氧化锌纳米棒及其表征[J]. 河北大学学报(自然科学版), 2015, 35(3): 265-271. |
[11] | 赵晓辉,王海凤,白子龙,王淑芳,傅广生. Bi1.6Pb0.4Sr2CO2Oy/Ag复合块材高温热电性能[J]. 河北大学学报(自然科学版), 2014, 34(2): 143-147,153. |
[12] | 孙文祥,李志文,刘林,梁伟华,王英龙. 应力对热电体电热效应的影响[J]. 河北大学学报(自然科学版), 2013, 33(4): 360-364. |
[13] | 王英龙,刘林,梁伟华,丁学成,褚立志. 钛含量对PZT/STO铁电电容器隧穿电阻的影响[J]. 河北大学学报(自然科学版), 2012, 32(6): 587-591. |
[14] | 王英龙,王兴远,丁学成,梁伟华,邓泽超,褚立志,傅广生. BiFeO_3多铁Landau模型的修正[J]. 河北大学学报(自然科学版), 2009, 29(6): 577-581. |
[15] | 闫小兵,刘保亭,边芳,闫正,赵庆勋. 铁电/铁磁复合材料的制备及研究进展[J]. 河北大学学报(自然科学版), 2007, 27(2): 213-218. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 98
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 481
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||