[1] 邬明亮,戴朝华,邓文丽,等.电气化铁路背靠背光伏发电系统及控制策略[J].电网技术,2018,42(2):541-547. DOI:10.13335/j.1000-3673.pst.2017.1709. [2] 周新军.铁路利用新能源和可再生能源潜力分析[J].中外能源,2016,21(5):29-34. [3] 王振海,陈霞,党敏,等.光伏发电系统接入城市轨道交通供电系统的应用研究[J].太阳能,2020(11):56-61. [4] 邓文丽,戴朝华,郭爱,等.光伏接入牵引供电系统谐波交互影响及其适应性分析[J].电力自动化设备,2019,39(4):181-189.DOI:10.16081/j.issn.1006-6047.2019.04.027. [5] HAYASHIYA H, YOSHIZUMI H, SUZUKI T, et al. Necessity and possibility of smart grid technology application on railway power supply system[C]. European Conference on Power Electronics and Applications, 2011. [6] 胡颖.关于轨道交通车辆基地太阳能光伏并网发电系统设计-访上海轨道交通技术研究中心技术总监王晓保[J].电气应用, 2014, 33(20):6-8. [7] 周超.太阳能光伏发电在城市轨道交通中的应用[J].都市快轨交通, 2013(2):77-80. [8] 樊军艳,党超.光伏发电在城市轨道交通线路中的应用[J].交通世界,2020(7):151-152.DOI:10.16248/j.cnki.11-3723/u.2020.07.069. [9] 张钊.光伏发电系统在重庆轨道交通中的应用[J].机电信息,2015(12):47-49.DOI:10.19514/j.cnki.cn32-1628/tm.2015.12.027. [10] 周超.地铁高架车站太阳能光伏发电系统设计[J].都市快轨交通,2014,27(6):104-108. [11] 杜书波,杨丽,赵庆双,等.城轨交通非牵引能耗系统性节能研究[J].建筑科学,2021,37(2):174-184. DOI:10.13614/j.cnki.11-1962/tu.2021.02.24. [12] 王国富,公丕柱,刘海东.济南轨道交通R1线高架车站光伏系统研究[J].都市快轨交通,2016,29(2):26-30. [13] 郑欣,庄毅华,许维敏.上海轨道交通分布式光伏的示范应用与发展前景[J].绿色建筑,2018,10(6):17-20. [14] 郑林涛,李晓歌,白雪,等.光伏发电系统在地铁高架车站的应用研究[J].建筑科学,2019,35(8):131-136.DOI:10.13614/j.cnki.11-1962/tu.2019.08.20. [15] 郑燕,张琨.城轨电扶梯出入口光伏系统方案研究[J].现代城市轨道交通,2016(2):15-18. [16] 王龙,聂金锋.光伏发电在城市轨道交通中的应用研究[J].电气化铁道,2014(5):44-46. [17] 侯霄,卢衍伟,朱丽媛,等.光伏发电技术在轨道交通客车中的应用[J].城市轨道交通研究,2017,20(6):138-141.DOI:10.16037/j.1007-869x.2017.06.030. [18] 何进,黄鑫.光伏发电在城市轨道交通的应用研究[J].电气应用,2018,37(10):31-35. [19] 陈维荣,王璇,李奇,等.光伏电站接入轨道交通牵引供电系统发展现状综述[J].电网技术,2019,43(10):3663-3670.DOI:10.13335/j.1000-3673.pst.2018.2498. [20] 邓文丽,戴朝华,陈维荣.轨道交通能源互联网背景下光伏在交/直流牵引供电系统中的应用及关键问题分析[J].中国电机工程学报,2019,39(19):5692-5702.DOI:10.13334/j.0258-8013.pcsee.181848. [21] 倪卫标,沈小军,赵时旻,等.光伏发电系统接入城市轨道交通供电系统模式研究[J].城市轨道交通研究,2014,17(11):78-81.DOI:10.16037/j.1007-869x.2014.11.020. [22] 龚莺飞,鲁宗相,乔颖,等.光伏功率预测技术[J].电力系统自动化,2016,40(4):140-151. [23] 舒胜,谢应明,杨文宇,等.光伏发电预测方法研究进展[J].热能动力工程,2020,35(11):1-11.DOI:10.16146/j.cnki.rndlgc.2020.11.001. [24] LIU L, LIU D, SUN Q, et al. Forecasting power output of photovoltaic system using a BP network method[J]. Energy Procedia, 2017, 142: 780-786. DOI: 10.1016/j.egypro.2017.12.126. [25] SHI Y, LI P, YUAN H, et al. Fast kernel extreme learning machine for ordinal regression[J]. Knowledge-Based Systems, 2019, 177: 44-54. DOI: 10.1016/j.knosys.2019.04.003. [26] DOU C, QI H, LUO W, et al. Elman neural network based short-term photovoltaic power forecasting using association rules and kernel principal component analysis[J]. Journal of Renewable and Sustainable Energy, 2018, 10(4): 043501. DOI: 10.1063/1.5022393. [27] WANG K, QI X, LIU H. Photovoltaic power forecasting based LSTM-convolutional network[J]. Energy, 2019, 189: 116225. DOI: 10.1016/j.energy.2019.116225. [28] ZANG H, CHENG L, DING T, et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. International Journal of Electrical Power and Energy Systems, 2020, 118: 105790. DOI: 10.1016/j.ijepes.2019.105790. [29] GAO M, LI J, HONG F, et al. Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM[J]. Energy, 2019, 187: 115838. DOI: 10.1016/j.energy.2019.07.168. [30] ZHANG J, TAN Z, WEI Y. An adaptive hybrid model for day-ahead photovoltaic output power prediction[J]. Journal of Cleaner Production, 2020, 244: 118858. DOI: 10.1016/j.jclepro.2019.118858. [31] SHARADGA H, HAJIMIRZA S, BALOG R S.. Time series forecasting of solar power generation for large-scale photovoltaic plants[J]. Renewable Energy, 2020, 150: 797-807. DOI: 10.1016/j.renene.2019.12.131. [32] PIERRO M, FELICE M D, MAGGIONI E, et al. Data-driven upscaling methods for regional photovoltaic power estimation and forecast using satellite and numerical weather prediction data[J]. Solar Energy, 2017, 158: 1026-1038. DOI: 10.1016/j.solener.2017.09.068. [33] 张玉,黄睿,张振涛,等.基于克里格模型的光伏发电量预测[J].热力发电,2017,46(4):27-32. [34] BENGHANEM M, MELLIT A, ALAMRI S N. ANN-based modelling and estimation of daily global solar radiation data: A case study[J]. Energy Conversion and Management, 2009, 50(7): 1644-1655. DOI: 10.1016/j.enconman.2009.03.035. [35] REDISKE G, SILUK J C M, MICHELS L, et al. Multi-criteria decision-making model for assessment of large photovoltaic farms in Brazil[J]. Energy, 2020, 197: 117167. DOI: 10.1016/j.energy.2020.117167. [36] LUKAC N, SPELIC D, STUMBERGER G, et al. Optimisation for large-scale photovoltaic arrays’ placement based on Light Detection And Ranging data[J]. Applied Energy, 2020, 263: 114592. DOI: 10.1016/j.apenergy.2020.114592. [37] VAPNIK V N. The nature of statistical learning theory[M]. 2nd edition. New York: Springer-Verlag, 1995. DOI: 10.1007/978-1-4757-2440-0. [38] SUYKENS J A K, VANDEWALLE J. Least square support vector machines classifiers[J]. Neural Processing Letters, 1999, 9(3): 293-300. DOI: 10.1023/A:1018628609742. [39] KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of ICNN95-International Conference on Neural Networks, 1995, 4: 1942-1948. DOI: 10.1109/ICNN.1995.488968. [40] LIU S, TIAN L, HUANG Y. A comparative study on prediction of throughput in coal ports among three models[J]. International Journal of Machine Learning and Cybernetics, 2014, 5(1): 125-133. DOI: 10.1007/s13042-013-0201-5. ( |