[1] 杨景瑞,王莹,陈虎,等.烟气中NOx脱除技术的研究进展[J] ,化工环保, 2020, 40(5): 461-466. DOI: 10.3969/j.issn.1006-1878.2020.05.001. [2] 王修文,李露露,孙敬方,等.我国氮氧化物排放控制及脱硝催化剂研究进展[J].工业催化, 2019, 27(2): 1-23. DOI: 10.3969/j.issn.1008-1143.2019.02.001. [3] 殷祥男,房晶瑞,王俊杰,等.Fe(Ⅱ)EDTA溶液脱除NO实验研究[J].工业安全与环保, 2017, 43(10): 88-92. DOI: 10.3969/j.issn.1001-425X.2017.10.023. [4] 张春燕,赵景开,郭天蛟,等.络合吸收-生物还原烟气脱硝系统的研究进展[J].高校化学工程学报, 2018, 32(6): 1235-1244. DOI: 10.3969/j.issn.1003-9015.2018.06.001. [5] CHEN J, WU J L, WANG J, et al. A mass-transfer model of nitric oxide removal in a rotating drum biofilter coupled with FeⅡ(EDTA)absorption[J]. Industrial and Engineering Chemistry Research, 2018, 57(24): 8144-8151. DOI: 10.1021/acs.iecr.8b00966. [6] 陶雯,张俊丰,肖瑾瑜,等. Fe(Ⅱ)EDTA络合吸收-铁粉还原再生脱除NO性能[J].环境工程学报, 2014, 8(12): 5393-5398. [7] HE F Q, DENG X H, CHEN M. Mechanism and kinetics of Fe(Ⅱ)EDTA-NO reduction by iron powder under anaerobic condition[J]. Fuel, 2016, 186: 605-612. DOI: 10.1016/j.fuel.2016.08.105. [8] WANG X J, ZHANG Y, DONG X Y, et al. Fe(Ⅱ)EDTA-NO reduction by sulfide in the anaerobic aqueous phase: stoichiometry and kinetics[J]. Energy & Fuels, 2013, 27(10): 6024-6030. DOI: 10.1021/ef401095f. [9] CHEN M X, ZHANG Y, ZHOU J T, et al. Sulfate removal by Desulfovibrio sp. CMX in chelate scrubbing solutions for NO removal[J]. Bioresource Technology, 2013, 143: 455-460. DOI: 10.1016/j.biortech.2013.06.037. [10] 李露,黄帮福,张桂芳,等.氨法脱硫副产物硫酸铵蒸发结晶研究与进展[J]. 现代化工, 2020, 40(4): 36-40. DOI: 10.16606/j.cnki.issn0253-4320.2020.04.009. [11] 刘楠,吴成志,刘芸,等.Fe(Ⅱ)EDTA吸收-微生物还原体系处理烟气中NO试验[J].浙江大学学报(工学版), 2011, 45(12): 2196-2201. DOI: 10.3785/j.issn.1008-973X.2011.12.019. [12] ZHANG S H, MI X H, CAI L L, et al. Evaluation of complexed NO reduction mechanism in a chemical absorption-biological reduction integrated NOx removal system[J]. Applied Microbiology and Biotechnology, 2008, 79(4): 537-544. DOI: 10.1007/s00253-008-1469-3. [13] ZHANG S H, LI W, WU C Z, et al. Reduction of Fe(Ⅱ)EDTA-NO by a newly isolated Pseudomonas sp. strain DN-2 in NOx scrubber solution[J]. Applied Microbiology and Biotechnology, 2007, 76(5): 1181-1187. DOI: 10.1007/s00253-007-1078-6. [14] KUMARASWAMY R, VAN DONGEN U, KUENEN J G, et al. Characterization of microbial communities removing nitrogen oxides from flue gas: the BioDeNOx process[J]. Applied and Environmental Microbiology, 2005, 71(10): 6345-6352. DOI: 10.1128/AEM.71.10.6345-6352.2005. [15] 陈明翔. Desulfovibrio sp.CMX还原烟气脱硫脱硝络合溶液过程特性研究[D]. 大连:大连理工大学, 2015. [16] 贾雪.Shewanella sp.RQs-106硝酸盐异化还原为铵过程特性研究[D].大连:大连理工大学, 2020. [17] FERNANDES S O, BONIN P C, MICHOTEY V D, et al. Nitrogen-limited mangrove ecosystems conserve N through dissimilatory nitrate reduction to ammonium[J]. Scientific Reports, 2012, 2: 419. DOI: 10.1038/srep00419. [18] BERNARD R J, MORTAZAVI B, KLEINHUIZEN A A. Dissimilatory nitrate reduction to ammonium(DNRA)seasonally dominates NO3- reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon[J]. Biogeochemistry, 2015, 125(1): 47-64. DOI: 10.1007/s10533-015-0111-6. [19] PANDEY C B, KUMAR U, KAVIRAJ M, et al. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems[J]. Science of The Total Environment, 2020, 738: 139710. DOI: 10.1016/j.scitotenv.2020.139710. [20] ZHOU Y, LU H, WANG J, et al. Catalytic performance of quinone and graphene-modified polyurethane foam on the decolorization of azo dye acid red 18 by Shewanella sp. RQs-106[J]. Journal of Hazardous Materials, 2018, 356: 82-90. DOI: 10.1016/j.jhazmat.2018.05.043. [21] 周翔,张玉,孙超越,等.脱氮硫杆菌利用FeS自养反硝化过程研究[J].大连理工大学学报, 2019, 59(5): 455-461. DOI: 10.7511/dllgxb201905003. [22] LI N, ZHANG Y, LI Y M, et al. Reduction of Fe(Ⅱ)EDTA-NO using Paracoccus denitrificans and changes of the Fe(Ⅱ)EDTA in the system[J]. Journal of Chemical Technology and Biotechnology, 2013, 88(2): 311-316. DOI: 10.1002/jctb.3833. [23] AKUNNA J C, BIZEAU C, MOLETTA R. Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol[J]. Water Research, 1993, 27(8): 1303-1312. DOI: 10.1016/0043-1354(93)90217-6. [24] LIU X, HAN J G, MA Z W, et al. Effect of carbon source on dissimilatory nitrate reduction to ammonium in coastal wetland sediments[J]. Journal of Soil Science and Plant Nutrition, 2016, 16(2): 337-349. DOI: 10.4067/S0718-95162016005000029. [25] 赵林,付贵萍,武金发,等.一株耐盐的卓贝儿氏菌(Zobellella sp.)的分离鉴定及其硝酸盐还原能力[J].微生物学通报, 2020, 47(5): 1354-1365. DOI: 10.13344/j.microbiol.china.190515. [26] PEREZ-RODRIGUEZ I, RICCI J, VOORDECKERS J W, et al. Nautilia nitratireducens sp. nov., a thermophilic, anaerobic, chemosynthetic, nitrate-ammonifying bacterium isolated from a deep-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(5): 1182-1186. DOI: 10.1099/ijs.0.013904-0. [27] CHUTIVISUT P, ISOBE K, POWTONGSOOK S, et al. Distinct microbial community performing dissimilatory nitrate reduction to ammonium(DNRA)in a high C/NO3 reactor[J]. Microbes and Environments, 2018, 33(3): 264-271. DOI: 10.1264/jsme2.ME17193. [28] HARDISON A K, ALGAR C K, GIBLIN A E, et al. Influence of organic carbon and nitrate loading on partitioning between dissimilatory nitrate reduction to ammonium(DNRA)and N2 production[J]. Geochimica et Cosmochimica Acta, 2015, 164: 146-160. DOI: 10.1016/j.gca.2015.04.049. [29] VAN DEN BERG E M, BOLEIJ M, KUENEN J G, et al. DNRA and denitrification coexist over a broad range of acetate/N-NO-3 ratios, in a chemostat enrichment culture[J]. Frontiers in Microbiology, 2016, 7: 1842. DOI: 10.3389/FMICB.2016.01842. [30] TUGTAS A E, PAVLOSTATHIS S G. Electron donor effect on nitrate reduction pathway and kinetics in a mixed methanogenic culture[J]. Biotechnology and Bioengineering, 2007, 98(4): 756-763. DOI: 10.1002/bit.21487. [31] YOON S, SAZNFORD R A, LÖFFZLER F E. Nitrite control over dissimilatory nitrate/nitrite reduction pathways in Shewanella loihica Strain PV-4[J]. Applied and Environmental Microbiology, 2015, 81(10): 3510-3517. DOI: 10.1128/AEM.00688-15. [32] 谢柄柯,张玉,王晓伟,等.菌株Desulfovibrio sp. CMX的DNRA性能和影响因素[J].环境科学. 2016, 37(10): 3955-3962. DOI: 10.13227/j.hjkx.2016.10.038. [33] 韦宗敏,黄少斌,蒋然.碳源对微生物硝酸盐异化还原成铵过程的影响[J].工业安全与环保, 2012, 38(9): 4-7. DOI: 10.3969/j.issn.1001-425X.2012.09.002. [34] 杜丽红,郝亚男,陈宁,等.有机氮源及其在微生物发酵中的应用[J].发酵科技通讯, 2019, 48(1): 1-4. DOI: 10.16774/j.cnki.issn.1674-2214.2019.01.001. [35] STEVENS R J, LAUGHLIN R J, MALONE J P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen[J]. Soil Biology and Biochemistry, 1998, 30(8-9): 1119-1126. DOI: 10.1016/S0038-0717(97)00227-7. [36] ZHANG J B, LAN T, MÜLLER C, et al. Dissimilatory nitrate reduction to ammonium(DNRA)plays an important role in soil nitrogen conservation in neutral and alkaline but not acidic rice soil[J]. Journal of Soils and Sediments, 2015, 15(3): 523-531. DOI: 10.1007/s11368-014-1037-7. [37] 陈韬,李剑沣,邹子介,等.氧化还原电位和pH对生物滞留系统硝酸盐异化还原为氨作用的影响[J]. 科学技术与工程, 2018, 18(4): 368-373. DOI: 10.3969/j.issn.1671-1815.2018.04.059. [38] LI X F, QIAN W, HOU L J, et al. Soil organic carbon controls dissimilatory nitrate reduction to ammonium along a freshwater-oligohaline gradient of Min River Estuary, Southeast China[J]. Marine Pollution Bulletin, 2020, 160: 111696. DOI: 10.1016/j.marpolbul.2020.111696. [39] RAHMAN M, GRACE M R, ROBERTS K L, et al. Effect of temperature and drying-rewetting of sediments on the partitioning between denitrification and DNRA in constructed urban stormwater wetlands[J]. Ecological Engineering, 2019, 140(2): 105586. DOI: 10.1016/j.ecoleng.2019.105586. [40] WANG S Y, LIU C L, WANG X X, et al. Dissimilatory nitrate reduction to ammonium(DNRA)in traditional municipal wastewater treatment plants in China: widespread but low contribution[J]. Water Research, 2020, 179: 115877. DOI: 10.1016/j.watres.2020.115877. [41] LAI T V, RYDER M H, RATHJEN J R, et al. Dissimilatory nitrate reduction to ammonium increased with rising temperature[J]. Biology and Fertility of Soils, 2021, 57(3): 363-372. DOI: 10.1007/S00374-020-01529-X. ( |