河北大学学报(自然科学版) ›› 2022, Vol. 42 ›› Issue (1): 98-104.DOI: 10.3969/j.issn.1000-1565.2022.01.014

• • 上一篇    下一篇

基于信息熵的商业银行客户画像属性约简研究

张宇敬,王柳,齐晓娜,许美玲,王蕾   

  • 收稿日期:2021-01-22 发布日期:2022-02-22
  • 作者简介:张宇敬(1966—),女,河北徐水人,河北金融学院教授,主要从事数据库技术、数据挖掘、金融信息化方向研究.
    E-mail:747595008@qq.com
  • 基金资助:
    河北省教育厅科技重点项目(ZD2019136);河北省教育厅科技青年基金资助项目(QN2019186);河北省高校智慧金融应用技术研发中心资助项目(XGZJ2021013C)

Attribute reduction of commercial bank customer portrait based on information entropy

ZHANG Yujing, WANG Liu, QI Xiaona, XU Meiling, WANG Lei   

  1. School of Computer and Information Engineering, Hebei Finance University, Baoding 071000, China
  • Received:2021-01-22 Published:2022-02-22

摘要: 客户画像是商业银行近年来的研究热点,从高维复杂的客户数据中筛选出有效属性是客户画像中的关键问题.为解决商业银行客户画像过程中,由于银行客户数据维度较高,难以实现精准画像的问题,在对客户数据进行聚类分析的基础上,结合粗糙集理论和信息熵理论,对商业银行投资客户画像属性进行了约简,并提出了属性约简算法,结果表明,该算法能够对银行客户画像数据进行有效约简,可以为属性筛选提供依据.

关键词: 客户画像, 聚类, 信息熵, 属性约简

Abstract: Customer portrait is a hot topic in commercial banks. One core issue of customer portrait is to select effective attributes from high-dimensional and complex customer data. The high-dimensional data makes it challenging to conduct customer portrait accurately. Based on the clustering analysis of customer data, we combine the rough set theory and information entropy to study the attribute reduction of customer portraits in commercial banks, and propose the attribute reduction algorithm. The experimental results show that the proposed method can obtain the optimal attribute reduction of customer portrait and can provide a basis for attribute selection.

Key words: customer portrait, cluster, information entropy, attribute reduction

中图分类号: