[1] WELLE F,FRANZ R. Migration of antimony from PET bottles into beverages: determination of the activation energy of diffusion and migration modelling compared with literature data[J]. Food Addit Contam: Part A,2011,28(1):115-126. DOI: 10.1080/19440049.2010.530296. [2] IVDRE A,FRIDRIHSONE-GIRONE A,ABOLINS A,et al. Effect of different concentration of rapeseed oil and recycled poly(ethylene terephthalate)in polyols for rigid polyurethane foams[J]. Cell Polym,2018,54(2):161-177. DOI: 10.1177/0021955X16670585. [3] RADENKOV P,RADENKOV M, GRANCHAROV G, et al. Direct usage of products of poly(ethylene terephthalate)glycolysis for manufacturing of glass-fibre-reinforced plastics[J]. Eur Polym J, 2003,39(6):1223-1228. DOI: 10.1016/S0014-3057(02)00331-2. [4] ALZOUBI K, LU S, SAMMAKIA B,et al. Experimental and analytical studies on the high cycle fatigue of thin film metal on PET substrate for flexible electronics applications[J]. IEEE Trans Compon, Packag, Manuf Technol,2011,1(1):43-51. DOI: 10.1109/TCPMT.2010.2100911. [5] PARK S J,KO T J, YOON J,et al. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates[J]. Appl Surf Sci,2018,427:1-9. DOI: 10.1016/j.apsusc.2017.08.195. [6] ZHU Y M,WANG Y,SHA L,et al. Preparation of antimicrobial fabric using magnesium-based PET masterbatch[J]. Appl Surf Sci,2017,425:1101-1110. DOI: 10.1016/j.apsusc.2017.07.044. [7] VESEL A,MOZETIC M. New developments in surface functionalization of polymers using controlled plasma treatments[J]. J Phys D: Appl Phys,2017,50(29):293001. DOI: 10.1088/1361-6463/aa748a. [8] OZEN I. Enhanced dyeability of poly(ethylene terephthalate)/organoclay nanocomposite filaments[J]. Color Technol,2015,131(6):464-473. DOI: 10.1111/cote.12179. [9] HOMOLA T,MATOUSEK J,HERGELOVA B,et al. Activation of poly(ethylene terephthalate)surfaces by atmospheric pressure plasma[J]. Polym Degrad Stab,2012,97(11):2249-2254. DOI: 10.1016/j.polymdegradstab.2012.08.001. [10] KANG Y J,CHUNG H,KIM M S,et al. Enhancement of CNT/PET film adhesion by nano-scale modification for flexible all-solid-state supercapacitors[J]. Appl Surf Sci,2015,355:160-165. DOI: 10.1016/j.apsusc.2015.07.108. [11] LI X C,LIN X T,WU K Y,et al. Regularly-swelling plumes generated in atmospheric pressure argon plasma jet excited by a biased sinusoidal voltage[J]. Plasma Sources Sci Technol,2019,28(5):055006. DOI: 10.1088/1361-6595/aaffff. [12] LI X C,CHEN J Y,LIN X T,et al. Morphology transition from diffuse to diffuse-and-filamentary for an argon plume with varying sinusoidal frequency or voltage amplitude[J]. Plasma Sources Sci Technol,2020,29(6):065015. DOI: 10.1088/1361-6595/ab6362. [13] JIA P Y,GAO K,ZHOU S,et al. Morphology evolution of an atmospheric pressure glow discharge initiated in the air gap between a liquid cathode and a needle anode[J]. Plasma Sources Sci Technol,2021,30(9):095021. DOI: 10.1088/1361-6595/abde51. [14] LI X C,LIU R J,LI X N,et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure[J]. Phys Plasmas,2019,26(2):023510. DOI: 10.1063/1.5063328. [15] LI X C,WU J C,JIA B Y,et al. Generation of a large-scale uniform plasma plume through the interactions between a pair of atmospheric pressure argon plasma jets[J]. Appl Phys Lett,2020,117(13):134102. DOI: 10.1063/5.0027061. [16] LI X C,LIN X T,WU K Y,et al. Plume transition from solid to hollow with increasing the bias value of a sinusoidal voltage applied to an argon plasma jet[J]. Plasma Processes Polym,2018,15(4):e1700224. DOI:10.1002/ppap.201700224. [17] LI X C,CHEN J Y,WU K Y,et al. A compound plume with solid and hollow parts formed downstream of an argon plasma jet at atmospheric pressure[J]. Phys Plasmas,2021,28(10):103507. DOI: 10.1063/5.0056626. [18] ZAPLOTNIK R, VESEL A. Effect of VUV Radiation on Surface Modification of Polystyrene Exposed to Atmospheric Pressure Plasma Jet[J]. Polymers,2020,12(5):1136. DOI: 10.3390/polym12051136. [19] NARIMISA M,ONYSHCHENKO Y,MORENT R,et al. Improvement of PET surface modification using an atmospheric pressure plasma jet with different shielding gases[J]. Polymer,2021,215:123421. DOI: 10.1016/j.polymer.2021.123421. [20] WAN M,LIU F,FANG Z,et al. Influence of gas flow and applied voltage on interaction of jets in a cross-field helium plasma jet array[J]. Phys Plasmas,2017,24(9): 093514. DOI: 10.1063/1.4991531. [21] LIU F, ZHANG B, FANG Z,et al. Jet-to-jet interactions in atmospheric-pressure plasma jet arrays for surface processing[J]. Plasma Processes Polym,2018,15(1):e1700114. DOI: 10.1002/ppap.201700114. [22] ZHANG C,SHAO T,ZHOU Y X,et al. Effect of O-2 additive on spatial uniformity of atmospheric-pressure helium plasma jet array driven by microsecond-duration pulses[J]. Appl Phys Lett,2014,105(4):044102. DOI: 10.1063/1.4887992. [23] LI X,LIU Y F,WANG L F,et al. Uniformity improvement of plumes in an atmospheric pressure argon plasma jet array by electric field optimization[J]. Eur Phys J D,2019,73(8):174. DOI: 10.1140/epjd/e2019-90643-9. [24] WALSH J L,KONG M G. Contrasting characteristics of linear-field and cross-field atmospheric plasma jets[J]. Appl Phys Lett,2008,93(11):111501. DOI: 10.1063/1.2982497. [25] 李雪辰,张盼盼,李霁媛,等. 棒-环电极大气压等离子体射流的光谱特性[J]. 光谱学与光谱分析,2017,37(6):1696-1699. DOI: 10.3964/j.issn.1000-0593(2017)06-1696-04. [26] 张盼盼, 李雪辰, 贾鹏英,等.电场与流场夹角对大气压等离子体羽动力学的影响[J].中国科学: 物理学 力学 天文学,2017,47(6):87-92. DOI: 10.1360/SSPMA2016-00449. [27] LI X C,WU K Y,LIU R J,et al. Spatial-temporal evolution and plasma parameters’ diagnosis of a transverse glow discharge in atmospheric pressure air[J]. IEEE Trans Plasma Sci,2019,47(2):1330-1335. DOI: 10.1109/TPS.2018.2882987. [28] WU J C,WU K Y,CHEN J Y,et al. Influence of air addition on surface modification of polyethylene terephthalate treated by an atmospheric pressure argon plasma brush[J]. Plasma Sources Sci Technol,2021,23(8):085504. DOI: 10.1088/2058-6272/ac0109. [29] LI X M,TANG J,ZHAN X F,et al. A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure[J]. Appl Phys Lett,2013,103(3):033519. DOI: 10.1063/1.4816061. [30] LI X C,CHU J D,JIA P Y,et al. Characterization of a laminar plasma plume based on dielectric-barrier discharge at atmospheric pressure[J]. IEEE Trans Plasma Sci,2018,46(3):583-586. DOI: 10.1109/TPS.2018.2797954. [31] LI X C,CHU J D,ZHANG Q,et al. Performance of a large-scale barrier discharge plume improved by an upstream auxiliary barrier discharge[J]. Appl Phys Lett,2016,109(20):204102. DOI: 10.1063/1.4966558. [32] XU H,CHEN C,LIU D X,et al. Contrasting characteristics of aqueous reactive species induced by cross-field and linear-field plasma jets[J]. J Phys D: Appl Phys,2017,50(24):245201. DOI: 10.1088/1361-6463/aa7118. [33] LIU X,WANG C C,LIU J Y,et al. Comparative study of surface modification of polyethylene by parallel-field and cross-field atmospheric pressure plasma jets[J]. J Appl Phys,2019,125(12):123301. DOI: 10.1063/1.5061751. [34] LI X C,LI J Y,CHU J D,et al. A linear-field plasma jet for generating a brush-shaped laminar plume at atmospheric pressure[J]. Phys Plasmas,2016,23(6):063521. DOI: 10.1063/1.4954829. [35] 杨丽君,宋彩虹,赵娜,等.大气压氩气刷形等离子体羽的特性研究[J].物理学报,2021,70(15):155201. DOI: 10.7498/aps.70.20202091. [36] LUPINKOVA S,KAIMLOVA M,KORMUNDA M,et al. Chitosan-capped sulfur microparticles grafted on UV-treated PET surface[J]. Surf Interface Anal,2021,53(1):108-117. DOI: 10.1002/sia.6884. [37] LI X M,TANG J,ZHAN X F,et al. A dielectric-barrier discharge enhanced plasma brush array at atmospheric pressure[J]. Appl Phys Lett,2013,103(3):033519. DOI: 10.1063/1.4816061. [38] DENG X,NIKIFOROV A Y,IONITA E R,et al. Absolute and relative emission spectroscopy study of 3 cm wide planar radio frequency atmospheric pressure bio-plasma source[J]. Appl Phys Lett,2015,107(5):053702. DOI: 10.1063/1.4928470. [39] ZHDANOVA O S, KUZNETSOV V S, PANARIN V A,et al. A planar source of atmospheric-pressure plasma jet[J]. Plasma Phys Rep,2018,44(1):153-156. DOI: 10.1134/S1063780X18010166. [40] JIANG W M,TANG J,WANG Y S,et al. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air[J]. Sci Rep,2014,4:6323. DOI: 10.1038/srep06323. [41] 李雪辰,张盼盼,楚婧娣,等.直流激励针-环等离子体喷枪放电模式的实验研究[J].中国科学: 物理学 力学 天文学,2017,47(2):80-86. DOI: 10.1360/SSPMA2016-00318. [42] WU J C,WU K Y,REN C H,et al. Comparison of discharge characteristics and methylene blue degradation through a direct-current excited plasma jet with air and oxygen used as working gases[J]. Plasma Sci Technol,2020,22(5):055505. DOI: 10.1088/2058-6272/ab6c00. [43] GOTOH K,SHOHBUKE E,KOBAYASHI Y,et al. Wettability control of PET surface by plasma-induced polymer film deposition and plasma/UV oxidation in ambient air[J]. Colloid Surf A-Physicochem Eng Asp,2018,556:1-10. DOI: 10.1016/j.colsurfa.2018.07.033. [44] KALASINSKY K S,KALASINSKY VE. Infrared and Raman microspectroscopy of foreign materials in tissue specimens[J]. Spectrochim Acta, Part A,2005,61(7):1707-1713. DOI: 10.1016/j.saa.2004.12.048. [45] LI X C,LIU R J,LI X N,et al. Large-scale surface modification to improve hydrophilicity through using a plasma brush operated at one atmospheric pressure[J]. Phys Plasmas,2019,26(2):023510. DOI: 10.1063/1.5063328. [46] WU J C,WU K Y,CHEN J Y,et al. Influence of air addition on surface modification of polyethylene terephthalate treated by an atmospheric pressure argon plasma brush[J]. Plasma Sci Technol,2021,23(8):085504. DOI: 10.1088/2058-6272/ac0109. [47] FANF Z,YANG J R,LIU Y,et al. Surface treatment of polyethylene terephthalate to improving hydrophilicity using atmospheric pressure plasma jet[J]. IEEE Trans Plasma Sci,2013,41(6):1627-1634. DOI: 10.1109/TPS.2013.2259508. [48] NGUYEN T P T,BARROCA-AUBRY N,DRAGOE D,et al. Facile and efficient Cu(0)-mediated radical polymerisation of pentafluorophenyl methacrylate grafting from poly(ethylene terephthalate)film[J]. Eur Polym J,2019,116:497-507. DOI: 10.1016/j.eurpolymj.2019.04.045. [49] ZHANG B,CHEN S X,WANG W C,et al. Polyester(PET)fabrics coated with environmentally friendly adhesive and its interface structure and adhesive properties with rubber[J]. Compos Sci Technol,2020,195:108171. DOI: 10.1016/j.compscitech.2020.108171. [50] DONEGAN M,MILOSAVLJEVIC V,DOWLING D P. Activation of PET using an RF atmospheric plasma system[J]. Plasma Chem Plasma Process,2013,33(5):941-957. DOI: 10.1007/s11090-013-9474-4. [51] FANG Z,WANG XJ,SHAO T,et al. Influence of oxygen content on argon/oxygen dielectric barrier discharge plasma treatment of polyethylene terephthalate film[J]. IEEE Trans Plasma Sci,2017,45(2):310-317. DOI: 10.1109/TPS.2016.2633063. [52] GOTOH K,KOBAYASHI Y,YASUKAWA A,et al. Surface modification of PET films by atmospheric pressure plasma exposure with three reactive gas sources[J]. Colloid Polym Sci,2012,290(11):1005-1014. DOI: 10.1007/s00396-012-2600-7. [53] WANG T,SHI LP,LV L,et al. Homogeneous surface hydrophilization on the inner walls of polymer tubes using a flexible atmospheric cold microplasma jet[J]. Plasma Processes Polym,2020,17(9):e2000056. DOI: 10.1002/ppap.202000056. [54] PANG H,CHEN Q,LI B,et al. The role of oxygen in a large area of RF-powered atmospheric pressure dielectric barrier glow discharge plasma in sterilization[J]. IEEE Trans Plasma Sci,2011,39(8):1689-1694. DOI: 10.1109/TPS.2011.2155104. ( |