[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics[J]. CA Cancer J Clin, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590. [2] HE Y F, WEI J, CHE S L, et al. Computer-aided pathological annotation framework: a deep learning-based diagnostic algorithm of lung cancer[C] //2019 International Conference on Information Technology and Computer Application(ITCA), 2019, Guangzhou, China, IEEE, 2020: 110-113. DOI: 10.1109/ITCA49981.2019.00032. [3] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639): 115-118. DOI: 10.1038/nature21056. [4] SIRINUKUNWATTANA K, RAZA S E A, TSANG Y W, et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images[J]. IEEE T Med Imaging, 2016, 35(5): 1196-1206. DOI: 10.1109/TMI.2016.2525803. [5] SHARMA H, ZERBE N, KLEMPERT I, et al. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology[J]. Comput Med Imaging Graph, 2017, 61: 2-13. DOI: 10.1016/j.compmedimag.2017.06.001. [6] WAHAB N, KHAN A, LEE Y S. Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection[J]. Comput Biol Med, 2017, 85: 86-97. DOI: 10.1016/j.compbiomed.2017.04.012. [7] WAN T, CAO J J, CHEN J H, et al. Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features[J]. Neurocomputing, 2017, 229: 34-44. DOI: 10.1016/j.neucom.2016.05.084. [8] XU X W, HOU R P, ZHAO W Y, et al. A weak supervision-based framework for automatic lung cancer classification on whole slide image[C] //2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC), 2020, Montreal, QC, Canada, IEEE, 2020: 1372-1375. DOI: 10.1109/EMBC44109.2020.9176620. [9] DENIZ N A, SERKAN O. Lung cancer classification and detection using convolutional neural networks[C] //Proceedings of the 6th International Conference on Engineering & MIS 2020, 2020, Almaty, Kazakhstan, New York: ACM, 2020: 1-8. DOI: 10.1145/3410352.3410822. [10] ABUBAKIR AHMED H, ABDULLA MAHMOOD S. A deep learning technique for lung nodule classification based on false positive reduction[J]. J Zankoy Sulaimani A, 2019, 21(1): 107-116. DOI: 10.17656/jzs.10749. [11] PANG S C, MENG F, WANG X, et al. VGG16-T: a novel deep convolutional neural network with boosting to identify pathological type of lung cancer in early stage by CT images[J]. Int J Comput Int Sys, 2020, 13(1): 771. DOI: 10.2991/ijcis.d.200608.001. [12] JAKIMOVSKI G, DAVCEV D. Using double convolution neural network for lung cancer stage detection[J]. Appl Sci, 2019, 9(3): 427. DOI: 10.3390/app9030427. [13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Las Vegas, NV, USA, IEEE, 2016: 779-788. DOI: 10.1109/CVPR.2016.91. [14] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[M] //Computer Vision – ECCV 2016. Cham: Springer International Publishing, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2. [15] GIRSHICK R. Fast R-CNN[C] //2015 IEEE International Conference on Computer Vision(ICCV), 2015, Santiago, Chile, IEEE, 2016: 1440-1448. DOI: 10.1109/ICCV.2015.169. [16] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C] //IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE, 2016: 1137-1149. DOI: 10.1109/TPAMI.2016.2577031. [17] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[J]. Int J Comput Vision, 2020, 128(3): 642-656. DOI: 10.1007/s11263-019-01204-1. [18] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C] //2017 IEEE International Conference on Computer Vision(ICCV), Venice, Italy. IEEE, 2017: 2980-2988. DOI: 10.1109/ICCV.2017.322. [19] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes(VOC)challenge[J]. Int J Comput Vision, 2010, 88(2): 303-338. DOI: 10.1007/s11263-009-0275-4. [20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. [2022-02-26]. https://arxiv.org/abs/1409.1556. [21] JANOWCZYK A, MADABHUSHI A. Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases[J]. J Pathol Inform, 2016, 7(1): 29. DOI: 10.4103/2153-3539.186902. ( |