[1] 李斌杰.住院病人的欠费预测模型研究[J].中国数字医学,2010,26(12):60-62.DOI:10.3969/j.issn.1673-7571.2010.012.019. LI B J.The research of inpatient delinquency forecasting model[J].Health Information Forum.2010,26(12):60-62.DOI: 10.3969/j.issn.1673-7571.2010.012.019. [2] 王栋,董理,占守义.基于分类技术的电信欠费预测模型[J].计算机工程与应用,2003,38(7):123-125. WANG D,DONG L,ZHAN S Y.Owing fee model in telecommunication based on classifying[J].Computer Engineering and Appliations,2003,38(7):1123-125. [3] 李学鹏,张国基.基于支持向量机的电信欠费客户分析模型[J].计算机应用,2006,5(12): 214-215. [4] 李玉华,李栋才,毕威,等.混合马尔科夫预测模型及其在反洗钱中的应用研究[J].计算机科学.2011,38(7):170-174. LI Y H,LI D C,BI W,et al.Hybrid Markov prediction model and research of application in anti-money laundering[J].Computer Science,2011,38(7):170-174. [5] DERRODE S,PIECZYNSKI W.Unsupervised classification using hidden Markov chain with unknown noise copulas and margins[J].Signal Processing,2016,128:8-17.DOI:10.1016/j.sigpro.2016.03.008. [6] 郑莉华,陈佳.基于贝叶斯网络的电信话费欺诈的模型研究及应用[J].计算机应用,2008,28(2):510-512. ZHENG L H,CHEN J.Research and application of telecom charge fraudulent model based on Bayesian network[J].Computer Applications,2008,28(2):510-512. [7] 金焱,胡云安,张瑾,等.互信息和爬山算法相结合的贝叶斯结构学习[J].计算机应用与软件,2012,29(9): 122-125.DOI:10.3969/j.issn.1000-386x.2010.09.032. JIN Y,HU Y A,ZHANG J,et al.Bayesian network structure learning combining mutual information with hill climbing algorithm [J].Computer Applications and Software,2012,29(9): 122-125.DOI:10.3969/j.issn.1000-386x.2010.09.032. [8] GHEISARI S,MEYBODI M R.BNC-PSO: structure learning of Bayesian networks by particle swarm optimization[J].Information Sciences,2016,348:272-289.DOI:10.1016/j.jns.2016.01.090. [9] 朱明敏.贝叶斯网络结构学习与推理研究[D].西安:西安电子科技大学,2013. ZHU M M.Research on structural learning and inference in Bayesian networks[D].Xi'an:Xidian University,2013. [10] JIANG J,WANG J,YU H,et al.Poison identification based on Bayesian network: A novel improvement on K2 algorithm via Markov blanket[J].Lecture Notes in Computer Science,2013:173-182.DOI:10.1007/978-3-642-38715-9_21. |