Journal of Hebei University (Natural Science Edition) ›› 2018, Vol. 38 ›› Issue (1): 12-21.DOI: 10.3969/j.issn.1000-1565.2018.01.003
Previous Articles Next Articles
WANG Shufang, GAO Linjie
Received:
2017-11-15
Online:
2018-01-25
Published:
2018-01-25
CLC Number:
WANG Shufang, GAO Linjie. Research progress of n-type oxides thermoelectric materials[J]. Journal of Hebei University (Natural Science Edition), 2018, 38(1): 12-21.
Add to citation manager EndNote|Ris|BibTeX
URL: //xbzrb.hbu.edu.cn/EN/10.3969/j.issn.1000-1565.2018.01.003
[1] ZHANG X, ZHAO L D.Thermoelectric materials: Energy conversion between heat and electricity[J].Journal of Materiomics, 2015,1(2): 92-105.DOI:10.1016/j.jmat.2015.01.001. [2] BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems[J].Science, 2008,321(5895): 1457-1461.DOI: 10.1126/science.1158899. [3] ZEBARJAD M, ESFARJANI K, DRESSELHAUS M S, et al.Perspectives on thermoelectrics: from fundamentals to device applications[J].Energy & Environmental Science, 2012,5(1):5147-5162.DOI: 10.1039/C1EE02497C. [4] KOUMOTO K, FUNAHASHI R, GUILMEAU E, et al.Thermoelectric ceramics for energy harvesting [J].Journal of the American Ceramic Society, 2013,96(1): 1-23.DOI: 10.1111/jace.12076. [5] ZHAO L D, TAN G J, HAO S Q, et al.Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe[J].Science, 2016,351(6269): 141-144.DOI: 10.1126/science.aad3749. [6] LIU Y, ZHAO L D, LIU Y, et al.Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[J].Journal of the American Ceramic Society, 2011,133(50):20112-20115.DOI: 10.1021/ja2091195. [7] ZHAO L D, DRAVID V P, KANATZIDIS M G. The panoscopic approach to high performance thermoelectrics[J].Energy & Environmental Science, 2014,7(1): 251-268.DOI: 10.1039/C3EE43099E. [8] SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials [J].Angew Chem Int Ed Engl, 2009,48(46):8616-8639.DOI: 10.1002/anie.200900598. [9] DRESSELHAUS M S, CHEN G, TANG M Y, et al.New directions for low-dimensional thermoelectric materials[J].Advanced Materials, 2007,19(8):1043-1053.DOI: 10.1002/adma.200600527. [10] BISWAS K, HE J, BLUM I D, et al.High-performance bulk thermoelectrics with all-scale hierarchical architectures[J].Nature, 2012,489(7416):414-418.DOI:10.1038/nature11439. [11] LIU H, SHI X, XU F, et al.Copper ion liquid-like thermoelectrics[J].Nature Material, 2012,11(5):422-425.DOI:10.1038/nmat3273. [12] PEI Y, LALONDE A D, HEINZ N A, et al.Stabilizing the optimal carrier concentration for high thermoelectric efficiency[J].Advanced Materials,2011,23(47):5674-5678.DOI: 10.1002/adma.201103153. [13] ZHAO L D, LO S H, ZHANG Y, et al.Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals[J].Nature, 2014,508(7496): 373-377.DOI:10.1038/nature13184. [14] ZHAO J B, LIU Z X, REID J, et al.Thermoelectric and electrical transport properties of Mg2Si multi-doped with Sb, Al and Zn[J].Journal of Materials Chemistry A, 2015,3(39):19774-19782.DOI:10.1039/C5TA03751D. [15] YU B, ZEBARJADI M, WANG H, et al.Enhancement of thermoelectric properties by modulation-doping in silicon germanium alloy nanocomposites[J].Nano Letters, 2012,12(4):2077-2082.DOI: 10.1021/nl3003045. [16] FAN H T, SU T C, LI H T, et al.Enhanced thermoelectric performance of PbSe co-doped with Ag and Sb[J].Journal of Alloys and Compounds, 2015,639:106-110.DOI:10.1016/j.jallcom.2015,03.117. [17] DOLLFUS P, NGUYEN V N, SAINT-MARTIN J. Thermoelectric effects in graphene nanostructures[J].Journal of physics-condensed matter, 2015,27(13):133204.DOI:10.1088/0953-8984/27/13/133204. [18] WU X L, GAO L J, ROUSSEL P, et al.Growth of c-Axis-Oriented BiCuSeO thin films directly on Si wafers[J].Journal of the American Ceramic Society, 2016,99(10):3367-3370.DOI: 10.1111/jace.14359. [19] MUN H, CHOI S M, LEE K H, et al.Boundary engineering for the thermoelectric performance of bulk alloys based on bismuth telluride[J].ChemSusChem, 2015,8(14): 2312-2326.DOI: 10.1002/cssc.201403485. [20] FU C G, WU H J, LIU Y T, et al.Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering[J].Advanced Science(Weinh), 2016,3(8):1600035.DOI: 10.1002/advs.201600035. [21] YU H J, JEONG M, LIM Y S, et al.Effects of Cu addition on band gap energy, density of state effective mass and charge transport properties in Bi2Te3 composites[J].RSC Advances, 2014,4(82):43811-43814.DOI: 10.1039/C4RA07134D. [22] HEREMANS J P, JOVOVIC V, TOBERER E S, et al.Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states[J].Science, 2008,321(5888):554-557.DOI: 10.1126/science.1159725. [23] PEI Y Z, WANG H, GIBBS Z M, et al.Thermopower enhancement in Pb1-xMnxTe alloys and its effect on thermoelectric efficiency[J].NPG Asia Materials, 2012,4(9):28.DOI:10.1038/am.2012.52. [24] WU D, ZHAO L D, TONG X, et al.Superior thermoelectric performance in PbTe-PbS pseudo-binary: extremely low thermal conductivity and modulated carrier concentration[J].Energy & Environmental Science, 2015,8(7): 2056-2068.DOI: 10.1039/C5EE01147G. [25] LI Y L, QIU P F, QUAN H Z, et al.Enhanced thermoelectric performance in rare-earth filled-skutterudites[J].Journal of Materials Chemistry C, 2016,4(20): 4374-4379.DOI: 10.1039/C6TC01000H. [26] ZONG P A, HANUS R, DYLLA M, et al.Skutterudite with graphene-modified grain-boundary complexion enhances zT enabling high-efficiency thermoelectric device[J].Energy & Environmental Science, 2017,10(1):183-191.DOI: 10.1039/C6EE02467J. [27] RAUSCH E, BALKE B, DESCHAUER T, et al.Charge carrier concentration optimization of thermoelectric p-type half-Heusler compounds[J].APL Materials, 2015,3(4):041516.DOI:10.1063/1.4916526. [28] FU C G, ZHU T J, LIU Y T, et al.Band engineering of high performance p-type FeNbSb based half-Heusler thermoelectric materials for figure of merit zT > 1[J].Energy & Environmental Science, 2015,8(1):216-220.DOI: 10.1039/C4EE03042G. [29] TERASAKI T, SASAGO Y, UCHINOKURA K. Large thermoelectric power in NaCo2O4 single crystals[J].Physical Review B, 1997,56:R12685-R12687.DOI:10.1103/PhysRevB.56.R12685. [30] ZHAO X H, WANG H F, WANG S F, et al.Enhancement of thermoelectric power factor in NaxCoO2/Au multilayers[J].RSC Advances, 2014,4(100):57148-57152.DOI: 10.1039/C4RA07319C. [31] MAENSIRI S, NUANSING W. Thermoelectric oxide NaCo2O4 nanofibers fabricated by electrospinning[J].Materials Chemistry and Physics, 2006,99(1):104-108.DOI:10.1016/j.matchemphys.2005.10.004. [32] VAN NONG N, PRYDS N, LINDEROTH S, et al.Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions[J].Advanced Materials, 2011,23(21):2484-2490.DOI: 10.1002/adma.201004782. [33] ABDELLAHI M, BAHMANPOUR M, BAHMANPOUR M. Modeling Seebeck coefficient of Ca3-xMxCo4O9(M=Sr, Pr, Ga, Ca, Ba, La, Ag)thermoelectric ceramics[J].Ceramics International, 2015,41(1):345-352.DOI:10.1016/j.ceramint.2014.08.077. [34] BOYLE C, CARVILLO P, CHEN Y, et al.Grain boundary segregation and thermoelectric performance enhancement of bismuth doped calcium cobaltite[J].Journal of the European Ceramic Society, 2016,36(3):601-607.DOI:10.1016/j.jeurceramsoc.2015.10.042. [35] WANG S F, SUN L Q, ZHANG H R, et al.Epitaxial Bi2Sr2Co2Oy thin films as a promising p-type transparent conducting oxides[J].Optical Materials Express, 2014,4(10): 2209.DOI:10.1364/OME.4.002209. [36] WEI R H, TANG X W, HUI Z Z, et al.Sodium doping effects on layered cobaltate Bi2Sr2Co2Oy thin films[J].Journal of the American Ceramic Society, 2014,97(6):1841-1845.DOI: 10.1111/jace.12844. [37] LIU Y, ZHAO L-D, LIU Y C, et al.Remarkable enhancement in thermoelectric performance of BiCuSeO by Cu deficiencies[J].Journal of the American Chenmical Society, 2011,133: 20112-20115.DOI: 10.1021/ja2091195. [38] ZHAO L D, HE J Q, BERARDAN D, et al.BiCuSeO oxyselenides: new promising thermoelectric materials[J].Energy & Environmental Science, 2014,7: 2900-2924.DOI: 10.1039/C4EE00997E. [39] HE J Q, YU H L, PEI Y Z, et al.Resonant doping in BiCuSeO thermoelectrics from first principles[J].Journal of Materials Chemistry A, 2017,5(3): 931-936.DOI: 10.1039/C6TA08788D. [40] WEN Q, CHANG C, PAN L, et al.Enhanced thermoelectric performance of BiCuSeO by increasing Seebeck coefficient through magnetic ion incorporation [J].Journal of Materials Chemistry A, 2017,5(26):13392-13399.DOI: 10.1039/C7TA03659K. [41] REN G K, WANG S Y, ZHU Y C, et al.Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier-phonon coupling[J].Energy & Environmental Science, 2017,10(7):1590-1599.DOI: 10.1039/C7EE00464H. [42] LI Z, XIAO C, FAN S J, et al.Dual vacancies: An effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO[J].Journal of the American Chemical Society, 2015,137(20): 6587-6593.DOI: 10.1021/jacs.5b01863. [43] WIFF J P, KINEMUCHI Y, KAGA H, et al.Correlations between thermoelectric properties and effective mass caused by lattice distortion in Al-doped ZnO ceramics[J].Journal of the European Ceramic Society, 2009,29(8):1413-1418.https://doi.org/10.1016/j.jeurceramsoc.2008.09.014. [44] TSUBOTA T, OHTAKI M, EGUCHI K, et al.Transport properties and thermoelectric performance of(Zn1-yMgy)1-xAlxO[J].Iournal of Materials Chemistry 1998, 8(2): 409-412.DOI: 10.1039/A706213C. [45] YADAV G G, ZHANG G, QIU B, et al.Self-templated synthesis and thermal conductivity investigation for ultrathin perovskite oxide nanowires[J].Nanoscale, 2011,3(10):4078-4081.DOI: 10.1039/C1NR10624D. [46] OHTA H, MIZUNO T, ZHENG S, et al.Unusually large enhancement of thermopower in an electric field induced two-dimensional electron gas[J].Advanced Materials, 2012,24(6):740-744.DOI: 10.1002/adma.201103809. [47] LIU Y, WU W, LIU D B, et al.Enhanced thermoelectric properties of Ga-doped In2O3 ceramics via synergistic band gap engineering and phonon suppression[J].Phys Chem Chem Phys, 2015,17(17):11229-11233.DOI: 10.1039/C5CP00739A. [48] GREGORY O J, AMANI M, FRALICK G C. Thermoelectric power factor of In2O3:Pd nanocomposite films[J].Applied Physics Letters, 2011,99(1):013107.DOI:10.1063/1.3607289. [49] LAN J L, LIN Y H, LIU Y,et al.High Thermoelectric performance of nanostructured In2O3-Based ceramics[J].Journal of the American Ceramic Society, 2012,95(8):2465-2469.DOI: 10.1111/j.1551-2916.2012.05284.x. [50] KOUMOTO K, TERASAKI I, FUNAHASHI R. Complex oxide materials for potential thermoelectric applications[J].Mrs Bulletin, 2006,31: 206-210.DOI:10.1557/mrs2006.46. [51] MATSUBARA I, FUNAHASHI R, TAKEUCHI T, et al.Fabrication of an all-oxide thermoelectric power generator[J].Applied Physics Letters, 2001,78(23):3627-3629.DOI:10.1063/1.1376155. [52] OHTAKI M,TSUBOTA T, EGUCHI K, et al.High-temperature thermoelectric properties of(Zn1-xAlx)O[J].Journal of Applied Physics, 1996,79(3):1816-1818.DOI:10.1063/1.360976. [53] JUNG K-H, HYOUNG LEE K, SEO W-S, et al.An enhancement of a thermoelectric power factor in a Ga-doped ZnO system: A chemical compression by enlarged Ga solubility[J].Applied Physics Letters, 2012,100(25):253902.DOI:10.1063/1.4729560. [54] CHAKRAPANI W, PENDYALA C, KASH K, et al.Electrochemical pinning of the Fermi level: mediation of photoluminescence from gallium nitride and zinc oxide[J].Journal of the American Chemical Society, 2008,130(39):12944-12952.DOI:10.1021/ja710999r. [55] ZHANG L H, TOSHO T, OKINAKA N, et al.Thermoelectric properties of solution combustion synthesized Al-doped ZnO [J].Materials Transactions, 2008,49(12)2868-2874.DOI:10.2320/matertrans.MAW200801. [56] CAI K F, MULLER E, DRASAR C, et al.Preparation and thermoelectric properties of Al-doped ZnO ceramics[J].Materials Science and Engineering: B, 2003,104(1-2):45-48.DOI:10.1016/S0921-5107(03)00280-0. [57] WANG N N, XIN H X, LI D, et al.High temperature thermoelectric properties of Nb-doped ZnO ceramics[J].Journal of Physics and Chemistry of Solids, 2013,74(12):1811-1815.DOI:10.1016/j.jpcs.2013.07.012. [58] YANG Y, PRADEL K C, JING Q S, et al.Thermoelectric Nanogenerators Based on single Sb-doped ZnO micro-nanobelts[J].ACS nano, 2012, 6(8):6984-6989.DOI: 10.1021/nn302481p. [59] JOOD P D, MEHTA R J, ZHANG Y L, et al.Heavy element doping for enhancing thermoelectric properties of nanostructured zinc oxide[J].RSC Advances, 2014,4(13):6363.10.DOI: 1039/C3RA46813E. [60] BARASHEED A Z, KUMAR S R S, ALSHAREEF H N. Temperature dependent thermoelectric properties of chemically derived gallium zinc oxide thin films[J].Journal of Materials Chemistry C, 2013,1(26): 4122.DOI: 10.1039/C3TC30215F. [61] GUILMEAU E, DIAZ-CHAO P, LEBEDEV O I, et al.Inversion Boundaries and Phonon Scattering in Ga:ZnO Thermoelectric Compounds[J].Inorganic Chemistry, 2017,56(1): 480-487.DOI: 10.1021/acs.inorgchem.6b02354. [62] TRAN NGUYEN N H, NGUYEN T H, LIU Y R, et al.Thermoelectric Properties of indium and gallium dually doped ZnO thin films[J].ACS Applied Materials & Interfaces, 2016,8(49):33916-33923.DOI: 10.1021/acsami.6b10591. [63] OHTAKI M, ARAKI K, YAMAMOTO K. High thermoelectric performance of dually doped ZnO ceramics[J].Journal of Electronic Materials, 2009,38(7): 1234-1238.DOI: 10.1007/s11664-009-0816-1. [64] BROCKWAY L, VASIRAJU V, SUNKARA M K, et al.Engineering efficient thermoelectrics from large-scale assemblies of doped ZnO nanowires: nanoscale effects and resonant-level scattering[J].ACS Applied Materials & Interfaces, 2014,6(17):14923-31490.DOI: 10.1021/am5023489. [65] NAM W H, LIM Y S, CHOI S-M, et al.High-temperature charge transport and thermoelectric properties of a degenerately Al-doped ZnO nanocomposite[J].Journal of Materials Chemistry, 2012,22(29):14633.DOI: 10.1039/C2JM31763J. [66] JOOD P, MEHTA R J, ZHANG Y, et al.Al-doped zinc oxide nanocomposites with enhanced thermoelectric properties[J].Nano Letter, 2011,11(10):4337-4342.DOI: 10.1021/nl202439h. [67] ZHANG D-B, LI H-Z, ZHANG B-P, et al.Hybrid-structured ZnO thermoelectric materials with high carrier mobility and reduced thermal conductivity[J].RSC Advances, 2017,7(18):10855-10864.DOI: 10.1039/C6RA28854E. [68] HE Y, LU P, SHI X, et al.Ultrahigh thermoelectric performance in mosaic crystals[J].Advanced Materials, 2015,27(24): 3639-3644.DOI: 10.1002/adma.201501030. [69] TAKEMOTO H, FUGANE K, YAN P F, et al.Reduction of thermal conductivity in dually doped ZnO by design of three-dimensional stacking faults[J].RSC Advances, 2014,4(6):2661-2672.DOI: 10.1039/C3RA44223C. [70] LIANG X. Thermoelectric transport properties of naturally nanostructured Ga-ZnO ceramics: Effect of point defect and interfaces[J].Journal of the European Ceramic Society, 2016,36(7):1643-1650.DOI:10.1016/j.jeurceramsoc.2016.02.017. [71] TYNELL T, GIRI A, GASKINS J, et al.Efficiently suppressed thermal conductivity in ZnO thin films via periodic introduction of organic layers[J].Journal of Materials Chemistry A, 2014,2(31):12150-12152.DOI: 10.1039/C4TA02381A. [72] NAM W H, KIM B B, SEO S G, et al.Structurally nanocrystalline-electrically single crystalline ZnO-reduced graphene oxide composites[J].Nano Letter, 2014,14(9):5104-5109.DOI: 10.1021/nl5018089. [73] CHEN D, ZHAO Y, CHEN Y, et al.One-step chemical synthesis of ZnO/graphene oxide molecular hybrids for high-temperature thermoelectric applications[J].ACS Applied Materials & Interfaces, 2015,7(5):3224-3230.DOI: 10.1021/am507882f. [74] KINEMUCHI Y, GUILMEAU E, LEBEDEV O I, et al.Tuning of dimensionless figure of merit via boundary scattering in In2O3-δ[J].Journal of Applied Physics, 2011,110(12):124304.DOI:10.1063/1.3669392. [75] BERARADAN D, GUILMEAU E, MAIGNAN A, et al.In2O3:Ge, a promising n-type thermoelectric oxide composite [J].Solid State Communications, 2008,146(1-2):97-101.DOI:10.1016/j.ssc.2007.12.033. [76] COMBE E, CHUBILLEAU C, BERARDAN D, et al.Citrate gel process and thermoelectric properties of Ge-doped In2O3 bulk ceramics[J].Powder Technology, 2011,208(2):503-508.DOI:10.1016/j.powtec.2010.08.050. [77] COMBE E, GUILMEAU E, BERARDAN D, et al.Microwave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process[J].Journal of the European Ceramic Society, 2015,35(1): 145-151.DOI:10.1016/j.jeurceramsoc.2014.08.012. [78] LIU Y, LIN Y-H, LAN J-L, et al.Effect of transition-metal cobalt doping on the thermoelectric performance of In2O3 ceramics[J].Journal of the American Ceramic Society, 2010,93(10):2938-2941.DOI: 10.1111/j.1551-2916.2010.03904.x. [79] LIU Y, LIN Y-H, XU Y, et al.High-temperature transport property of In2-xCexO3(0≤x≤0.10)fine grained ceramics[J].Journal of the American Ceramic Society, 2012,95(8):2568-2572.DOI: 10.1111/j.1551-2916.2012.05206.x. [80] BERARDAN D, GUILMEAU E, MAIGNAN A, et al.Enhancement of the thermoelectric performances of In2O3 by the coupled substitution of M2+/Sn4+ for In3+[J].Journal of Applied Physics, 2008,104(6):064918.DOI:10.1063/1.2986148. [81] CHENG B, FANG H, LAN J L, et al.Thermoelectric performance of Zn and GeCo-Doped In2O3 fine-grained ceramics by the spark plasma sintering[J].Journal of the American Ceramic Society, 2011,94(8): 2279-2281.DOI: 10.1111/j.1551-2916.2011.04640.x. [82] LAN J L, LIN Y, LIN Y-H, et al.Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering[J].Scientific Reports, 2015,5: 7783.DOI: 10.1038/srep07783. [83] SHARMA P A, BROWN-SHAKLEE H J, IHLEFELD J F. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides[J].Applied Physics Letters, 2017,110(17):173901.DOI:10.1063/1.4982239. [84] SUN J, SINGH D J. Thermoelectric properties ofn-type SrTiO3[J].APL Materials, 2016,4(10):104803.DOI:10.1063/1.4952610. [85] AKIN I, LI M, LU Z L, et al.Oxygen-loss in A-site deficient Sr0.85La0.10TiO3 perovskite[J].RSC Advances, 2014,4(61):32549-32554.DOI: 10.1039/C4RA04199B. [86] DANG F, WAN C, PARK N H, et al.Thermoelectric performance of SrTiO3 enhanced by nanostructuring-self-assembled particulate film of nanocubes[J].ACS Applied Materials & Interfaces, 2013,5(21):10933-10937.DOI: 10.1021/am403112n. [87] PARK K, SON J S, WOO S I, et al.Colloidal synthesis and thermoelectric properties of La-doped SrTiO3 nanoparticles[J].Journal of Materials Chemistry A, 2014,2(12):4217.DOI: 10.1039/C3TA14699E. [88] KOVALEVSKY A V, YAREMCHENKO A A, POPULON S, et al.Towards a high thermoelectric performance in rare-earth substituted SrTiO3: effects provided by strongly-reducing sintering conditions[J].Phys Chem Chem Phys, 2014,16(48):26946-26954.DOI: 10.1039/C4CP04127E. [89] ROY P, PAL V, MAITI T.Effect of Spark Plasma Sintering(SPS)on the thermoelectric properties of SrTiO3:15 at% Nb[J].Ceramics International, 2017,43(15):12809-12813.DOI:10.1016/j.ceramint.2017.06.170. [90] MEHDIZADEH DEHKORDI A, BHATTACHARYA S, DARROUDI T, et al.Large Thermoelectric Power Factor in Pr-Doped SrTiO3-δCeramics via Grain-Boundary-Induced Mobility Enhancement[J].Chemistry of Materials, 2014,26(7):2478-2485.DOI: 10.1021/cm4040853. [91] DEHKORDI A M, BHATTACHARYA S, DARROUDI T, et al.New insights on the synthesis and electronic transport in bulk polycrystalline Pr-doped SrTiO3-δ[J].Journal of Applied Physics, 2015,117(5):055102.DOI:10.1063/1.4905417. [92] WANG N, CHEN H, HE H, et al.Enhanced thermoelectric performance of Nb-doped SrTiO3 by nano-inclusion with low thermal conductivity[J].Scientific Reports, 2013,3:3449.DOI: 10.1038/srep03449. [93] WANG H C, WANG C L, SU W B, et al.Doping effect of La and Dy on the thermoelectric properties of SrTiO3[J].Journal of the American Ceramic Society, 2011,94(3):838-842.DOI: 10.1111/j.1551-2916.2010.04185.x. [94] KOVALEVSKY A V, POPULON S, PATRICIO S G, et al.Design of SrTiO3-based thermoelectrics by tungsten substitution[J].The Journal of Physical Chemistry C, 2015,119(9):4466-4478.DOI: 10.1021/jp510743h. [95] ABUTAHA A I, KUMAR S R S, LI K, et al.Enhanced thermoelectric figure-of-merit in thermally robust, nanostructured superlattices based on SrTiO3[J].Chemistry of Materials, 2015,27(6):2165-2171.DOI: 10.1021/acs.chemmater.5b00144. [96] KOVALEVSKY A V, YAREMCHENKO A A, POPULON S, et al.Effect of a-site cation deficiency on the thermoelectric performance of donor-substituted strontium titanate[J].The Journal of Physical Chemistry C, 2014,118(9):4596-4606.DOI: 10.1021/jp409872e. [97] SRIVASTAVA D, NORMAN C, AZOUGH F, et al.Tuning the thermoelectric properties of A-site deficient SrTiO3 ceramics by vacancies and carrier concentration[J].Phys Chem Chem Phys, 2016,18(38):26475-26486.DOI: 10.1039/C6CP05523K. [98] LIU Z L, ZHANG H R, LEI W, et al.High-figure-of-merit thermoelectric La-doped a-site-deficient SrTiO3 Ceramics[J].Chemistry of Materials, 2016,28(3):925-935.DOI: 10.1021/acs.chemmater.5b04616. [99] MOLINARI M, TOMPSETT D A, PAR KER S C, et al.Structural, electronic and thermoelectric behaviour of CaMnO3 and CaMnO3-δ[J].Journal of Materials Chemistry A, 2014,2(34):14109-14117.DOI: 10.1039/C4TA01514B. [100] SCHRADE M, KABIR R, LI S, et al.High temperature transport properties of thermoelectric CaMnO3-δ-Indication of strongly interacting small polarons[J]. Journal of Applied Physics, 2014,115: 103705.DOI:10.1063/1.4868321. [101] WANG Y, SUI Y, CHENG J G, et al.High temperature metal-insulator transition induced by rare-earth doping in perovskite CaMnO3[J].The Journal of Physical Chemistry C, 2009,113:12509-12516.DOI: 10.1021/jp809049s. [102] VECHERSKII S I, KONOPELOK M A, ESINA N O, et al.Transport Properties of Ca1-xMnO3-δ+xCeO2(0 <x≤0.15)Mixtures[J].Inorganic Materials, 2002,38(12): 1270-1276.. [103] XU G J, FUNAHASHI R, MATSUBARA I, et al.High-temperature thermoelectric properties of the Ca1-xBixMnO3 system[J].Journal of Materials Research, 2002,17(5):1092-1095.DOI:10.1557/JMR.2002.0161. [104] OHTAKI M, KOGA H, TOKUNAGA T, et al.Electrical transport properties and high-temperature thermoelectric performance of(Ca0.9M0.1)MnO3(M=Y, La, Ce, Sm, In, Sn, Sb, Pb, Bi)[J].Journal of Solid State Chemistry, 1995,120:105-111.DOI:10.1006/jssc.1995.1384. [105] BHASKAR A, YUAN J J, LIU C J. Thermoelectric properties of n-type Ca1-xBixMnO3-δ(0.00, 0.02, and 0.05)system[J].Journal of Electroceramics, 2013,31(1-2): 124-128.DOI 10.1007/s10832-013-9811-2. [106] KABIR R, TIAN R M, ZHANG T S, et al.Role of Bi doping in thermoelectric properties of CaMnO3[J].Journal of Alloys and Compounds, 2015,628:347-351.DOI:10.1016/j.jallcom.2014.12.141. [107] WANG Y, SUI Y, WANG X J, et al.Effects of substituting La3+,Y3+ and Ce4+ for Ca2+ on the high temperature transport and thermoelectric properties of CaMnO3[J].Journal of Physics D: Applied Physics, 2009,42: 055010. [108] WANG Y, SUI Y, SU W.High temperature thermoelectric characteristics of Ca0.9R0.1MnO3(R=La,Pr,…,Yb)[J].Journal of Applied Physics, 2008,104(9):093703.DOI:10.1063/1.3003065. [109] FLAHAUT D, MIHARA T, FUNAHASHI R, et al.Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system[J].Journal of Applied Physics, 2006,100(8): 084911.DOI:10.1063/1.2362922. [110] ZHU Y H, SU W B, LIU J, et al.Effects of Dy and Yb co-doping on thermoelectric properties of CaMnO3 ceramics[J].Ceramics International, 2015,41(1):1535-1539.DOI:10.1016/j.ceramint.2014.09.089. [111] ZHOU Y Q, MATSUBARA I, FUNAHASHI R, et al.Influence of Mn-site doped with Ru on the high-temperature thermoelectric performance of CaMnO3-δ [J].Materials Research Bulletin, 2003,38:341-346.DOI:10.1016/S0025-5408(02)00997-2. [112] THIEL P, EILERTSEN J, POPULOH S, et al.Influence of tungsten substitution and oxygen deficiency on the thermoelectric properties of CaMnO3-δ [J].Journal of Applied Physics, 2013,114:243707.DOI:10.1063/1.4854475. [113] TAGUCHI H, KUGI T, KATO M, et al.Fabrication of(Ca1-xLax)MnO3 Ceramics with a High Relative Density and their Power Factor[J].Journal of the American Ceramic Society, 2010,93(10): 3009-3011.DOI: 10.1111/j.1551-2916.2010.03987.x. [114] LAN J L, LIN Y H, FANG H, et al.High-Temperature Thermoelectric Behaviors of Fine-Grained Gd-Doped CaMnO3 Ceramics[J].Journal of the American Ceramic Society, 2010,93(8):2121-2124.DOI: 10.1111/j.1551-2916.2010.03673.x. [115] BOCHER L, AGUIRRE M H, LOGINOVICH, et al.CaMn1-xNbxO3(x≤0.08)perovskite-type phases as promising new high-temperature n-type thermoelectric materials[J].Inorganic Chemistry,2008,47(18):8077-8085.DOI: 10.1021/ic800463s. [116] GAO L J, LI L J, WANG S F, et al.Enhanced thermoelectric performance of CdO ceramics by PMMA and Cu2O Co-Doping[J].Science of Advanced Materials, 2015,7(11):2470-2475.DOI:10.1166/sam.2015.2428. [117] WANG S F, LIU F Q,LV Q, et al.The effect of Er3+ doping on the structure and thermoelectric properties of CdO ceramics[J].Journal of the European Ceramic Society, 2013,33(10): 1763-1768.DOI:10.1016/j.jeurceramsoc.2013.02.025. [118] WANG S F, LV Q, LI L J, et al.High-temperature thermoelectric properties of Cd1-xPrxO ceramics[J].Scripta Materialia, 2013,69(7): 533-536.DOI:10.1016/j.scriptamat.2013.06.018. [119] GAO L J, WANG L J, LI L J, et al.Tuning of the microstructure and thermoelectric properties of CdO ceramics by Mg substituting[J].Materials Chemistry and Physics, 2016,174: 172-178.DOI:10.1016/j.matchemphys.2016.02.069. [120] GAO L J, ZHAI S J, LIU R, et al.Enhanced Thermoelectric Performance of CdO Ceramics Via Ba2+Doping[J].Journal of the American Ceramic Society, 2015,98(10):3285-3290.DOI: 10.1111/jace.13780. [121] GAO L J, WANG S F, LIU R, et al.Enhanced thermoelectric performance in Mg and Ca substituted CdO ceramics[J].RSC Advances, 2016,6(48):42249-42254.DOI: 10.1039/C6RA04175B. [122] LI L, LIANG S, LI S, et al.Enhanced thermoelectric performance in CdO by nano-SiO2 inclusions[J].Nanotechnology, 2014,25(42):425402.DOI: 10.1088/0957-4484/25/42/425402. [123] LIU R, GAO L J, LI L J, et al.Enhanced high-temperature thermoelectric performance of CdO ceramics with randomly distributed micropores[J].Journal of the American Ceramic Society, 2017,100(7): 3239-3245.DOI: 10.1111/jace.14849. [124] GAO L J, WANG S F, LIU R, et al.The effect of Ni doping on the thermoelectric transport properties of CdO ceramics[J].Journal of Alloys and Compounds, 2016,662:213-219.DOI:10.1016/j.jallcom.2015.12.043. [125] GAO L J, WANG F S, LIU R, et al.Enhanced thermoelectric performance of CdO:Ag nanocomposites[J].Dalton Transactions, 2016,45(30):12215-12220.DOI: 10.1039/C6DT02348G. [126] FU G S, GAO L J, LIU R, et al.Synergistically tuning the electrical and thermal transport properties of CdO:Cu thermoelectric ceramics[J].Materials Research Express, 2017,4(7):075502.DOI: 10.1088/2053-1591/aa70d8. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||