[1] LIU Y, MIYAZAKI J. Knowledge-aware attentional neural network for review-based movie recommendation with explanations[J]. Neural Comput & Applic, 2022, 35(3): 2717-2735. DOI: 10.1007/s00521-022-07689-1. [2] 潘华莉,谢珺,高婧,等.融合多模态特征的深度强化学习推荐模型[J/OL].数据分析与知识发现,2022:1-18. [2023-03-20]. http://kns.cnki.net/kcms/detail/10.1478.G2.20220907.1507.008.html. [3] 张建伟,李月琳,李东东.网络学术资源平台个性化推荐服务特征研究[J].情报资料工作,2021,42(5):76-83. DOI: 10.12154/j.qbzlgz.2021.05.009 [4] 冉从敬,宋凯.基于混合方法的高校专利个性化推荐模型构建[J].情报理论与实践,2020,43(10):93-98. DOI: 10.16353/j.cnki.1000-7490.2020.10.017. [5] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46: 109-132. DOI: 10.1016/j.knosys.2013.03.012. [6] 潘涛涛,文锋,刘勤让.基于矩阵填充和物品可预测性的协同过滤算法[J].自动化学报,2017,43(9):1597-1606. DOI: 10.16383/j.aas.2017.c160644. [7] 马鑫,王芳.融合类目偏好和数据场聚类的协同过滤推荐算法研究[J].现代情报,2023 43(1):6-18. [8] 王洪伟,郑丽娟,尹裴,等.在线评论的情感极性分类研究综述[J].情报科学,2012,30(8):1263-1271,1276. DOI: 10.13833/j.cnki.is.2012.08.008. [9] 庞庆华,董显蔚,周斌,等.基于情感分析与TextRank的负面在线评论关键词抽取[J].情报科学,2022,40(5):111-117. DOI: 10.13833/j.issn.1007-7634.2022.05.015. [10] 徐怡,唐一民,王冉.基于正相关和负相关最近邻居的协同过滤算法[J].工程科学与技术,2018,50(5):189-195. DOI: 10.15961/j.jsuese.201700764. [11] 张宇,王文剑,赵胜男.基于正负反馈的SVM协同过滤Top-N推荐算法[J].小型微型计算机系统,2017,38(5):961-966. [12] WALEK B, FOJTIK V. A hybrid recommender system for recommending relevant movies using an expert system[J]. Expert Systems with Applications, 2020, 158, 113452: 1-18. DOI: 10.1016/j.eswa.2020.113452. [13] 丁来旭,刘洪娟.复杂网络上基于多维特征表示学习的推荐算法[J].东北大学学报(自然科学版),2022,43(3):359-367. DOI: 10.12068/j.issn.1005-3026.2022.03.008. [14] CHEN Y L, YEH Y H, MA M R. A movie recommendation method based on users positive and negative profiles[J]. Inf Process Manag, 2021, 58(3), 102531: 1-13. DOI: 10.1016/j.ipm.2021.102531. [15] ZENG Z, SHI Y, PIEPTEA L F, et al. Using latent features for building an interpretable recommendation system[J]. The Electronic Library, 2021, 39(2): 281-295. DOI:10.1108/EL-06-2020-0154. [16] 李浩君,吕韵,汪旭辉,等.融入情感分析的多层交互深度推荐模型研究[J].数据分析与知识发现,2023,7(3):43-57. [17] 蒋翠清,郭轶博,刘尧.基于中文社交媒体文本的领域情感词典构建方法研究[J].数据分析与知识发现,2019,3(2):98-107. DOI: 10.11925/infotech.2096-3467.2018.0578. [18] 徐琳宏,林鸿飞,潘宇,等.情感词汇本体的构造[J].情报学报,2008,27(2):180-185. DOI: 10.3969/j.issn.1000-0135.2008.02.004. [19] ZHU Y L, MIN J, ZHOU Y Q, et al. Semantic orientation computing based on HowNet[J]. Journal of Chinese Information Processing, 2006,20(1):14-20. [20] KU L W, CHEN H H. Mining opinions from the web: Beyond relevance retrieval[J]. Journal of the American Society for Information Science and Technology, 2010, 58(12): 1838-1850. DOI: 10.1002/asi.20630. [21] 夏建勋,吴非,谢长生.应用数据填充缓解稀疏问题实现个性化推荐[J].计算机工程与科学,2013,35(5):15-19. DOI: 10.3969/j.issn.1007-130X.2013.05.003. [22] ABDELWAHAB A, SEKIYA H, MATSUBA I, et al. Collaborative filtering based on an iterative prediction method to alleviate the sparsity problem[C] //Proceedings of the 11th International Conference on Information Integration and Web-based Applications & Services, December 14-16, 2009, Kuala Lumpur, Malaysia, New York: ACM, 2009: 375-379. DOI: 10.1145/1806338.1806406. [23] SON J, KIM S B. Content-based filtering for recommendation systems using multiattribute networks[J]. Expert Syst Appl, 2017, 89: 404-412. DOI: 10.1016/j.eswa.2017.08.008. [24] 姜霖,张麒麟.基于评论情感分析的个性化推荐策略研究:以豆瓣影评为例[J].情报理论与实践,2017,40(8):99-104.DOI: 10.16353/j.cnki.1000-7490.2017.08.018. [25] 许智宏,于子琪,董永峰,等.影评情感分析知识图谱构建研究[J].计算机仿真,2020,37(8):424-430. [26] 顾亦然,张远之,杨海根.基于电影属性和交互信息的电影推荐算法[J].南京理工大学学报,2022,46(2):177-184. DOI: 10.14177/j.cnki.32-1397n.2022.46.02.008. [27] 曹宗胜,许倩倩,李朝鹏,等.基于对偶四元数的协同知识图谱推荐模型[J].计算机学报,2022,45(10):2221-2242. DOI: 10.11897/SP.J.1016.2022.02221. [28] 梁浩宏,古天龙,宾辰忠,等.联合学习用户端和项目端知识图谱的个性化推荐[J].计算机科学,2021,48(5):109-116. DOI: 10.11896/jsjkx.200600115. [29] 袁泉,成振华,江洋.基于知识图谱和协同过滤的电影推荐算法研究[J].计算机工程与科学,2020,42(4):714-721. DOI: 10.3969/j.issn.1007-130X.2020.04.019. [30] ZHEN W, ZHANG J, FENG J, et al. Knowledge graph embedding by translating on hyperplanes[C]. National Conference on Artificial Intelligence AAAI Press, 2014: 1112-1119. [31] 牛秀娟.基于用户情感分析和信任关系的推荐算法研究[D].西安:西北大学,2020. [32] 金丹,张娇娇,李依玲,等.一种改进的协同过滤算法研究:以电影推荐系统为例[J].国际商务,2020(1):128-141. DOI: 10.13509/j.cnki.ib.2020.01.010. ( |