[1] SHAHROKHIAN S. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode[J]. Anal Chem, 2001, 73(24): 5972-5978. DOI: 10.1021/ac010541m. [2] SESHADRI S, BEISER A, SELHUB J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease[J]. N Engl J Med, 2002, 346(7): 476-483. DOI: 10.1056/NEJMoa011613. [3] DALTON T P, SHERTZER H G, PUGA A. Regulation of gene expression by reactive oxygen[J]. Annu Rev Pharmacol Toxicol, 1999, 39: 67-101. DOI: 10.1146/annurev.pharmtox.39.1.67. [4] VACEK J, KLEJDUS B, PETRLOVÁ J, et al. A hydrophilic interaction chromatography coupled to a mass spectrometry for the determination of glutathione in plant somatic embryos[J]. Analyst, 2006, 131(10): 1167-1174. DOI: 10.1039/b606432a. [5] LIANG G L, RONALD J, CHEN Y X, et al. Controlled self-assembling of gadolinium nanoparticles as “smart” molecular magnetic resonance imaging contrast agents[J]. Angew Chem Int Ed Engl, 2011, 50(28): 6283-6286. DOI: 10.1002/anie.201007018. [6] KACZYÑSKA A, PELSERS M M A L, BOCHOWICZ A, et al. Plasma heart-type fatty acid binding protein is superior to troponin and myoglobin for rapid risk stratification in acute pulmonary embolism[J]. Clin Chim Acta, 2006, 371(1/2): 117-123. DOI: 10.1016/j.cca.2006.02.032. [7] MACCOSS M J, FUKAGAWA N K, MATTHEWS D E. Measurement of homocysteine concentrations and stable isotope tracer enrichments in human plasma[J]. Anal Chem, 1999, 71(20): 4527-4533. DOI: 10.1021/ac990541a. [8] WANG Y T, YAN H M, YUE Y K, et al. GSH and H2O2 dynamic correlation in the ferroptosis pathways revealed by engineered probe in tumor and kidney injury[J]. Chem Eng J, 2023, 464: 142496. DOI: 10.1016/j.cej.2023.142496. [9] 孟美荣,阴彩霞.一种荧光增强型的GSH荧光探针[J].河北大学学报(自然科学版), 2019, 39(1): 49-55. DOI: 10.3969/j.issn.1000-1565.2019.01.009. [10] LIU Y, WU Y X, ZHANG D L, et al. Rational design of in situ localization solid-state fluorescence probe for bio-imaging of intracellular endogenous cysteine[J]. Talanta, 2020, 220: 121364. DOI: 10.1016/j.talanta.2020.121364. [11] CHEN J, LI Y W, FENG X K, et al. An ICT-based fluorescent probe guided by theoretical calculation for selectively mapping endogenous GSH in living cells[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2021, 246: 119041. DOI: 10.1016/j.saa.2020.119041. [12] CAI S T, LIU C, JIAO X J, et al. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine(Cys)in living cells[J]. J Mater Chem B, 2020, 8(11): 2269-2274. DOI: 10.1039/C9TB02609F. [13] HE R K, ZHANG Y C, MADHU S, et al. BODIPY based realtime, reversible and targeted fluorescent probes for biothiol imaging in living cells[J]. Chem Commun, 2020, 56(93): 14717-14720. DOI: 10.1039/d0cc06313d. [14] ZHU Y D, PAN H T, SONG Y Y, et al. Mitochondria-targeted fluorescent probe for rapid detection of thiols and its application in bioimaging[J]. Dyes Pigm, 2021, 191: 109376. DOI: 10.1016/j.dyepig.2021.109376. [15] LIANG B B, WANG B Y, MA Q J, et al. A lysosome-targetable turn-on fluorescent probe for the detection of thiols in living cells based on a 1, 8-naphthalimide derivative[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2018, 192: 67-74. DOI: 10.1016/j.saa.2017.10.044. [16] ZHANG X, LIU C Y, CAI X Y, et al. A highly specific Golgi-targetable fluorescent probe for tracking cysteine generation during the Golgi stress response[J]. Sens Actuat B Chem, 2020, 310: 127820. DOI: 10.1016/j.snb.2020.127820. [17] LENG S, QIAO Q L, MIAO L, et al. A wash-free SNAP-tag fluorogenic probe based on the additive effects of quencher release and environmental sensitivity[J]. Chem Commun, 2017, 53(48): 6448-6451. DOI: 10.1039/c7cc01483j. [18] OHYANAGI T, SHIMA T, OKADA Y, et al. Compact and stable SNAP ligand-conjugated quantum dots as a fluorescent probe for single-molecule imaging of dynein motor protein[J]. Chem Commun, 2015, 51(80): 14836-14839. DOI: 10.1039/c5cc05526a. ( |