[1] CHEN C, BOBELA D C, YANG Y, et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics[J]. Front Optoelectron, 2017, 10(1): 18-30. DOI: 10.1007/s12200-017-0702-z. [2] YANG W, PARK J, KWON H C, et al. Solar water splitting exceeding 10% efficiency via low-cost Sb2Se3 photocathodes coupled with semitransparent perovskite photovoltaics[J]. Energy Environ Sci, 2020, 13(11): 4362-4370. DOI: 10.1039/D0EE02959A. [3] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. J Appl Phys, 1961, 32(3): 510-519. DOI: 10.1063/1.1736034. [4] YANG W, LEE S, KWON H C, et al. Time-resolved observations of photo-generated charge-carrier dynamics in Sb2Se3 photocathodes for photoelectrochemical water splitting[J]. ACS Nano, 2018, 12(11): 11088-11097. DOI: 10.1021/acsnano.8b05446. [5] WANG K, CHEN C, LIAO H Y, et al. Both free and trapped carriers contribute to photocurrent of Sb2Se3 solar cells[J]. J Phys Chem Lett, 2019, 10(17): 4881-4887. DOI: 10.1021/acs.jpclett.9b01817. [6] GRAD L, VON ROHR F, ZHAO J Z, et al. Photoexcited charge carrier dynamics in Sb2Se3(100)[J]. Phys Rev Materials, 2020, 4(10): 105404. DOI: 10.1103/physrevmaterials.4.105404. [7] GRAD L, VON ROHR F O, HENGSBERGER M, et al. Charge carrier dynamics and self-trapping on Sb2Se3(100)[J]. Phys Rev Materials, 2021, 5(7): 075401. DOI: 10.1103/physrevmaterials.5.075401. [8] SINGH P, GHORAI N, THAKUR A, et al. Temperature-dependent ultrafast charge carrier dynamics in amorphous and crystalline Sb2Se3 thin films[J]. J Phys Chem C, 2021, 125(9): 5197-5206. DOI: 10.1021/acs.jpcc.0c11327. [9] CAO R, CAI H L, LIAN W T, et al. Revealing the chemical structure-dependent carrier trapping in one-dimensional antimony selenide photovoltaic materials[J]. J Mater Chem A, 2022, 10(38): 20482-20488. DOI: 10.1039/D2TA03044F. [10] TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium[J]. Phys Status Solidi B, 1966, 15(2): 627-637. DOI: 10.1002/pssb.19660150224. [11] KOSEK F, TULKA J, ŠTOURACˇ L. Optical, photoelectric and electric properties of single-crystalline Sb2Se3[J]. Czechoslov J Phys B, 1978, 28(3): 325-330. DOI: 10.1007/BF01597220. [12] YADAV R K, ANEESH J, SHARMA R, et al. Ultrafast direct charge transfers mediated modification of third order nonlinear optical response in Sb2Se3-Au core shell nanorods[J]. Appl Phys Lett, 2020, 117(3): 032104. DOI: 10.1063/5.0011168. [13] KAUR A, GOSWAMI T, BABU K J, et al. Efficient hot electron transfer and extended separation of charge carriers at the 1P hot state in Sb2Se3/CdSe p-n heterojunction[J]. J Phys Chem Lett, 2022, 13(48): 11354-11362. DOI: 10.1021/acs.jpclett.2c03308. [14] ZHOU Y, WANG L, CHEN S Y, et al. Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries[J]. Nat Photonics, 2015, 9: 409-415. DOI: 10.1038/nphoton.2015.78. [15] SAVORY C, SCANLON D O. The complex defect chemistry of antimony selenide[J]. J Mater Chem A, 2019, 7(17): 10739-10744. DOI: 10.1039/C9TA02022E. [16] LIU X, XIAO X, YANG Y, et al. Enhanced Sb2Se3 solar cell performance through theory-guided defect control[J]. Prog Photovolt, 2017, 25(10):861-870. DOI:10.1002/pip.2900. [17] KURUVILLA A, FRANCIS M, LAKSHMI M. Effect of selenisation on the properties of antimony selenide thin films[J]. IOP Conf Ser: Mater Sci Eng, 2020, 872(1): 012151. DOI: 10.1088/1757-899x/872/1/012151. [18] 张贺翔,杨卫霞,林雪玲,等.Mn掺杂GaSb的电子结构和光学性质[J].河北师范大学学报(自然科学版), 2021, 41(1): 15-22. DOI: 10.3969/j.issn.1000-1565.2021.01.003. [19] SCHOENLEIN R W, LIN W Z, IPPEN E P, et al. Femtosecond hot-carrier energy relaxation in GaAs[J]. Appl Phys Lett, 1987, 51(18): 1442-1444. DOI: 10.1063/1.98651. ( |