Journal of Hebei University(Natural Science Edition) ›› 2025, Vol. 45 ›› Issue (1): 91-103.DOI: 10.3969/j.issn.1000-1565.2025.01.010

Previous Articles     Next Articles

Construction method of microblog user interest profile based on content preference and emotional tendency

XU Jianmin,WANG Mingyu   

  1. School of Cyber Security and Computer, Hebei University, Baoding 071000, China
  • Received:2024-09-19 Online:2025-01-25 Published:2025-02-25

Abstract: The explosive growth of microblogging data makes information screening increasingly difficult.Constructing a reasonable microblog user interest profile helps to achieve accurate service and improve recommendation performance. First, the LDA(latent Dirichlet allocation)model is used to excavate the users content preference characteristics from the users historical content,and the corresponding emotional tendency in the users different content preferences is calculated by the emotional analysis model, so as to obtain the users interest profile containing two dimensions of content preferences and their corresponding emotional tendencies. When evaluating microblog recommendations based on user interest profile, where the users content preferences are used for the initial screening first to see whether the content of the blog post matches with the users content preference. And if they match each other, the algrithm would further filters the blog posts by emotional tendency, compares their emotional similarity under the same content preference, and select the blog posts above the threshold to add into the recommendation set. The experimental results on the real microblog dataset show that the microblog recommendation- DOI:10.3969/j.issn.1000-1565.2025.01.010基于内容偏好和情绪倾向的微博用户兴趣画像构建方法徐建民,王铭宇(河北大学 网络空间安全与计算机学院,河北 保定 071000)摘 要:微博数据的爆炸式增长,使信息筛选变得越来越困难.构建合理的微博用户兴趣画像,有助于实现精准化服务,提高推荐性能.首先,利用LDA(latent Dirichlet allocation)模型从用户历史内容中挖掘用户的内容偏好特征,并通过情绪分析模型计算用户不同内容偏好对应的情绪倾向,得到包含内容偏好及其对应情绪倾向2个维度的用户兴趣画像;在基于用户兴趣画像进行微博推荐评估时,利用用户内容偏好进行初步筛选,比较待评估博文内容与用户的内容偏好是否匹配,若匹配则进一步通过情绪倾向进行过滤,比较同一内容偏好下的情绪相似度,选取高于阈值的博文加入推荐集.真实微博数据集的实验结果表明,与基于标签的推荐模型、基于情感关联规则的推荐模型和基于主题的推荐模型相比,本文微博推荐方法具有更好的性能,在F1值上分别提升了10%、6%和2%.关键词:用户兴趣画像;内容偏好;情绪倾向;微博推荐中图分类号:TP391.3 文献标志码:A 文章编号:1000-1565(2025)01-0091-13Construction method of microblog user interest profile based on content preference and emotional tendencyXU Jianmin,WANG Mingyu(School of Cyber Security and Computer, Hebei University, Baoding 071000, China)Abstract: The explosive growth of microblogging data makes information screening increasingly difficult.Constructing a reasonable microblog user interest profile helps to achieve accurate service and improve recommendation performance. First, the LDA(latent Dirichlet allocation)model is used to excavate the users content preference characteristics from the users historical content,and the corresponding emotional tendency in the users different content preferences is calculated by the emotional analysis model, so as to obtain the users interest profile containing two dimensions of content preferences and their corresponding emotional tendencies. When evaluating microblog recommendations based on user interest profile, where the users content preferences are used for the initial screening first to see whether the content of the blog post matches with the users content preference. And if they match each other, the algrithm would further filters the blog posts by emotional tendency, compares their emotional similarity under the same content preference, and select the blog posts above the threshold to add into the recommendation set. The experimental results on the real microblog dataset show that the microblog recommendation- 收稿日期:2024-09-19;修回日期:2024-11-05 基金项目:国家社会科学基金资助项目(23BTQ092) 第一作者:徐建民(1966—),男,河北大学教授,博士生导师,主要从事信息检索方向研究.E-mail:hbuxjm@hbu.edu.cn 通信作者:王铭宇(1997—),男,河北大学在读硕士研究生,主要从事微博推荐方向研究.E-mail:yu668135@163.com 第1期徐建民等:基于内容偏好和情绪倾向的微博用户兴趣画像构建方法河北大学学报(自然科学版) 第45卷method in this paper has better performance compared with the label-based recommendation model, sentiment association rule-based recommendation model and topic-based recommendation model, with 10%, 6% and 2% improvement in the F1 value, respectively.

Key words: user interest profile, content preference, emotions tendency, microblog recommendation

CLC Number: