[1] AZZAM F, KAYED M, ALI A. A model for generating a user dynamic profile on social media[J]. J King Saud Univ Comput Inf Sci, 2022, 34(10): 9132-9145. DOI: 10.1016/j.jksuci.2022.08.036. [2] KHALIL M M Y, WANG Q X, CHEN B, et al. Cross-modality representation learning from transformer for hashtag prediction[J]. J Big Data, 2023, 10(1): 140-148. DOI: 10.1186/s40537-023-00824-2. [3] DJENOURI Y, BELHADI A, SRIVASTAVA G, et al. An efficient and accurate GPU-based deep learning model for multimedia recommendation[J]. ACM Trans Multimedia Comput Commun Appl, 2024, 20(2): 1-18. DOI: 10.1145/3524022. [4] 邵一博,秦玉华,崔永军,等.融合多粒度信息的用户画像生成方法[J].计算机应用研究, 2024, 41(2): 401-407. DOI: 10.19734/j.issn.1001-3695.2023.05.0234. [5] 李丹,高建忠.基于用户画像的图书馆推荐服务初探[J].图书馆, 2019(7): 66-71.DOI: 10.3969/j.issn.1002-1558.2019.07.010. [6] 陈添源,梅鑫.多源数据融合的用户画像识别与推荐实证研究[J].情报理论与实践, 2024, 47(4): 171-180. DOI: 10.16353/j.cnki.1000-7490.2024.04.022. [7] PUJAHARI A, SISODIA D S. Item feature refinement using matrix factorization and boosted learning based user profile generation for content-based recommender systems[J]. Expert Syst Appl, 2022, 206: 117849. DOI: 10.1016/j.eswa.2022.117849. [8] 夏立新,胡畔,刘坤华,等.融入信息推荐场景要素的在线健康社区用户画像研究[J].图书情报知识, 2023, 40(3): 116-128.DOI: 10.13366/j.dik.2023.03.116. [9] 金吉琼,居雷,张易,等.基于用户画像的卷烟消费者特征识别和价值评估[J].烟草科技, 2023, 56(1):105-112. DOI:10.16135/j.issn1002-0861.2022.0531. [10] 费鹏,林鸿飞,杨亮,等.一种用于构建用户画像的多视角融合框架[J].计算机科学, 2018, 45(1): 179-182. DOI: 10.11896/j.issn.1002-137X.2018.01.031. [11] CUI Y C, YU H L, GUO X X, et al. RAKCR: reviews sentiment-aware based knowledge graph convolutional networks for Personalized Recommendation[J]. Expert Syst Appl, 2024, 248: 123403. DOI: 10.1016/j.eswa.2024.123403. [12] 于伟杰,杨文忠,任秋如.基于全词BERT的集成用户画像方法[J].东北师大学报(自然科学版), 2022, 54(4): 87-92. DOI: 10.16163/j.cnki.dslkxb202104053. [13] 杨洋洋.数据驱动下网络辟谣信息画像与治理模式研究——基于引爆点理论[J/OL].情报科学, 1-14[2024-05-07]. http://kns.cnki.net/kcms/detail/22.1264.G2.20240506.1702.014.html. [14] 吴树芳,吴崇崇,朱杰.基于兴趣转移的微博用户动态画像生成[J].情报科学, 2021, 39(8): 103-111.DOI: 10.13833/j.issn.1007-7634.2021.08.013. [15] 王志刚,邱长波.基于主题的政务微博评论用户画像研究[J].情报杂志, 2022, 41(3): 159-165.DOI: 10.3969/j.issn.1002-1965.2022.03.022. [16] XU K, ZHENG X S, CAI Y, et al. Improving user recommendation by extracting social topics and interest topics of users in uni-directional social networks[J]. Knowl Based Syst, 2018, 140: 120-133. DOI: 10.1016/j.knosys.2017.10.031. [17] 王战平,夏榕.基于社会化标签挖掘的微博内容推荐方法研究[J].情报科学, 2021, 39(5): 91-96.DOI:10.13833/j.issn.1007-7634.2021.05.013. [18] BAO F, XU W, FENG Y, et al. A topic-rank recommendation model based on microblog topic relevance &user preference analysis[J]. Hum-Cent Comput Info, 2022, 12(10): 1-19.DOI: https://doi.org/10.22967/HCIS.2022.12.010. [19] 杨永清,孙凯,张媛媛,等.基于信息画像的突发事故灾难舆情传播效果的预测模型研究[J].情报科学, 2024, 42(4), 27-35. DOI: 10.13833/j.issn.1007-7634.2024.04.004. [20] 王帅,纪雪梅.基于在线健康社区用户画像的情感表达特征研究[J].情报理论与实践, 2022, 45(6): 179-87. DOI: 10.16353/j.cnki.1000-7490.2022.06.024. [21] 李铁军,颜端武,杨雄飞.基于情感加权关联规则的微博推荐研究[J].数据分析与知识发现, 2020, 4(4): 27-33. DOI: 10.11925/infotech.2096-3467.2019.0765. [22] 赵又霖,林怡妮,陆颖隽,等.社会感知数据驱动下用户时空行为画像及语义关联研究[J].图书馆学研究, 2024(2): 54-62. DOI: 10.3969/j.issn.1672-0504.2022.01.011. [23] ROBERTS K, ROACH M A, JOHNSON J, et al. EmpaTweet: annotating and detecting emotions on twitter[C] //Proc 8th Int Conf Lang Resour Eval LREC 2012, 2012: 3806-3813.DOI: 10.1155/2012/678107. [24] 张柳,王晰巍,黄博,等.基于LDA模型的新冠肺炎疫情微博用户主题聚类图谱及主题传播路径研究[J].情报学报, 2021, 40(3): 234-244. DOI: 10.3772/j.issn.1000-0135.2021.03.002. [25] LIU X, BURNS A C, HOU Y J. An investigation of brand-related user-generated content on twitter[J]. J Advert, 2017, 46(2): 236-247. DOI: 10.1080/00913367.2017.1297273. [26] 张国防,王鑫,徐建民.基于主题词共现的文档非对称关系量化研究[J].数据分析与知识发现, 2023, 7(3): 110-120. DOI: 10.11925/infotech.2096-3467.2022.0342. [27] 曾子明,陈思语.基于LDA与BERT-BiLSTM-Attention模型的突发公共卫生事件网络舆情演化分析[J].情报理论与实践, 2023, 46(9): 158-166. DOI: 10.16353/j.cnki.1000-7490.2023.09.019. [28] 徐琳宏,林鸿飞,潘宇,等.情感词汇本体的构造[J].情报学报, 2008, 27(2): 180-185. DOI: 10.3969/j.issn.1000-0135.2008.02.004. [29] 黄山成,韩东红,乔百友,等.基于 ERNIE2. 0-BiLSTM-Attention 的隐式情感分析方法[J].小型微型计算机系统, 2021, 42(12): 2485-2489. DOI:1000-1220(2021)12-2485-05. [30] 张金柱,孙雯雯,仇蒙蒙.融合异构网络表示学习与注意力机制的引文推荐研究[J/OL]. 数据分析与知识发现, 1-17 [2024-06-19]. http://kns.cnki.net/kcms/detail/10.1478.g2.20240117.1104.012.html. ( |