[1] ZHANG J Y, LUO W, ZHAO Y, et al. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice[J]. New Phytol, 2016, 211(4):1295-1310. DOI: 10.1111/nph.14011. [2] MA Y, DAI X Y, XU Y Y, et al. COLD1 confers chilling tolerance in rice[J]. Cell, 2015, 160(6): 1209-1221. DOI: 10.1016/j.cell.2015.01.046. [3] THOR K. Calcium-nutrient and messenger[J]. Front Plant Sci, 2019, 10:440. DOI: 10.3389/fpls.2019.00440. [4] ZHU X, DUNAND C, SNEDDEN W, et al. CaM and CML emergence in the green lineage[J]. Trends Plant Sci, 2015, 20(8):483-489. DOI: 10.1016/j.tplants.2015.05.010. [5] GALON Y, FINKLER A, FROMM H. Calcium-regulated transcription in plants[J]. Mol Plant, 2010, 3(4):653-669. DOI: 10.1093/mp/ssq019. [6] REDDY A S N, ALI G S, CELESNIK H, et al. Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression[J]. Plant Cell, 2011, 23(6):2010-2032. DOI: 10.1105/tpc.111.084988. [7] CHEVAL C, ALDON D, GALAUD J P, et al. Calcium/calmodulin-mediated regulation of plant immunity[J]. Biochim Biophys Acta, 2013, 1833(7):1766-1771.DOI: 10.1016/j.bbamcr.2013.01.031. [8] MCCORMACK E, TSAI Y C, BRAAM J. Handling calcium signaling: Arabidopsis CaMs and CMLs[J]. Trends Plant Sci, 2005, 10(8):383-389. DOI: 10.1016/j.tplants.2005.07.001. [9] BOONBURAPONG B, BUABOOCHA T. Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins[J]. BMC Plant Biol, 2007, 7:4. DOI: 10.1186/1471-2229-7-4. [10] ALEYNOVA O A, KISELEV K V, OGNEVA Z V, et al. The grapevine calmodulin-like protein gene CML21 is regulated by alternative splicing and involved in abiotic stress response[J]. Int J Mol Sci, 2020, 21(21):7939. DOI: 10.3390/ijms21217939. [11] VERDE V L, DOMINICI P, ASTEGNO A. Towards understanding plant calcium signaling through calmodulin-like proteins: biochemical and structural perspective[J]. Int J Mol Sci, 2018, 19(5):1331. DOI: 10.3390/ijms19051331. [12] CHU M X, LI J J, ZHANG J Y, et al. AtCaM4 interacts with a Sec14-like protein, PATL1, to regulate freezing tolerance in Arabidopsis in a CBF-independent manner[J]. J Exp Bot, 2018, 69(21):5241-5253. DOI: 10.1093/jxb/ery278. [13] TERESINSKI H J, HAU B, SYMONDS K, et al. Arabidopsis calmodulin-like proteins CML13 and CML14 interact with proteins that have IQ domains[J]. Plant Cell Environ, 2023, 46(8):2470-2491. DOI: 10.1111/pce.14616. [14] HAU B, SYMONDS K, TERESINSKI H, et al. Arabidopsis calmodulin-like proteins CML13 and CML14 interact with calmodulin-binding transcriptional activators and function in salinity stress response[J]. Plant Cell Physiol, 2024, 65(2):282-300. DOI: 10.1093/pcp/pcad152. [15] YANG J, LIU S, JI L X, et al. Identification of novel OsCML16 target proteins and differential expression analysis under abiotic stresses in rice[J]. J Plant Physiol, 2020,249:153165. DOI: 10.1016/j.jplph.2020.153165. [16] CHEN C J, WU Y, LI J W, et al. TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining[J]. Mol Plant, 2023,16(11):1733-1742. DOI:10.1016/j.molp.2023.09.010 [17] DOHERTY C J, VAN BUSKIRK H A, MYERS S J, et al. Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance[J]. Plant Cell, 2009,21(3):972-984. DOI: 10.1105/tpc.108.063958. [18] STOCKINGER E J, GILMOUR S J, THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proc Natl Acad Sci U S A, 1997,94(3):1035-1040. DOI: 10.1073/pnas.94.3.1035. [19] VALLONE R, VERDE V L, DONOFRIO M, et al. Metal binding affinity and structural properties of calmodulin-like protein 14 from Arabidopsis thaliana[J]. Protein Sci, 2016,25(8):1461-1471. DOI: 10.1002/pro.2942. [20] OGUNRINDE A, MUNRO K, DAVIDSON A, et al. Arabidopsis calmodulin-like proteins, CML15 and CML16 possess biochemical properties distinct from calmodulin and show non-overlapping tissue expression patterns[J]. Front Plant Sci, 2017,8:2175. DOI: 10.3389/fpls.2017.02175. [21] DOBNEY S, CHIASSON D, LAM P, et al. The calmodulin-related calcium sensor CML42 plays a role in trichome branching[J]. J Biol Chem, 2009,284(46):31647-31657. DOI: 10.1074/jbc.M109.056770. [22] ASTEGNO A, BONZA M C, VALLONE R, et al. Arabidopsis calmodulin-like protein CML36 is a calcium Ca2+ sensor that interacts with the plasma membrane Ca2+-ATPase isoform ACA8 and stimulates its activity[J]. J Biol Chem, 2017,292(36):15049-15061. DOI: 10.1074/jbc.M117.787796. [23] VAN DER LUIT A H, OLIVARI C, HALEY A, et al. Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco[J]. Plant Physiol, 1999,121(3):705-714. DOI: 10.1104/pp.121.3.705. [24] DELK N A, JOHNSON K A, CHOWDHURY N I, et al. CML24, regulated in expression by diverse stimuli, encodes a potential Ca2+ sensor that functions in responses to abscisic acid, daylength, and ion stress[J]. Plant Physiol, 2005,139(1):240-253. DOI: 10.1104/pp.105.062612. [25] MAGNAN F, RANTY B, CHARPENTEAU M, et al. Mutations in AtCML9, a calmodulin-like protein from Arabidopsis thaliana, alter plant responses to abiotic stress and abscisic acid[J]. Plant J, 2008,56(4):575-589. DOI: 10.1111/j.1365-313X.2008.03622.x. ( |