[1] 赵文清,康怿瑾,赵振兵,等.改进 YOLOv5s 的遥感图像目标检测[J]. 智能系统学报, 2022, 18(1): 86-95.DOI:10.11992/tis.202203013. [2] 徐丹青,吴一全.光学遥感图像目标检测的深度学习算法研究进展[J].遥感学报,2024:1-30. DOI: 10.11834/jrs.20243166. [3] ZHANG Z M, WARRELL J, TORR P H S. Proposal generation for object detection using cascaded ranking SVMs[C] //CVPR, Colorado Springs, CO, USA, IEEE, 2011: 1497-1504. DOI: 10.1109/CVPR.2011.5995411. [4] SHI Z, YU X, JIANG Z,et al.Ship Detection in High-Resolution Optical Imagery Based on Anomaly Detector and Local Shape Feature[J].IEEETransactions on Geoscience and Remote Sensing, 2014, 52(8):4511-4523.DOI:10.1109/TGRS.2013.2282355. [5] ZHU X K, LYU S C, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C] //2021 IEEE/CVF International Conference on Computer Vision Workshops(ICCVW), Montreal, BC, Canada, IEEE, 2021: 2778-2788. DOI: 10.1109/ICCVW54120.2021.00312. [6] XU X K, FENG Z J, CAO C Q, et al, An Improved Swin Transformer-Based Model for Remote Sensing Object Detection and Instance Segmentation[J].Remote Sensing,2021,13(23):4779.DOI:10.3390/rs13234779. [7] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical Vision Transformer using Shifted Windows[C] // 2021 IEEE/CVF International Conference on Computer Vision(ICCV), Montreal, QC, Canada, IEEE, 2021: 9992-10002. DOI: 10.1109/ICCV48922.2021.00986. [8] WANG G, CHEN Y F, AN P, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. Sensors, 2023, 23(16): 7190. DOI: 10.3390/s23167190. [9] 许德刚,王再庆,邢奎杰,等.改进YOLOv6的遥感图像目标检测算法[J].计算机工程与应用, 2024, 60(3): 119-128. DOI: 10.3778/j.issn.1002-8331.2304-0270. [10] JIANG L B, LI X J. An efficient and accurate object detection algorithm and its application[C] //2020 IEEE 5th Information Technology and Mechatronics Engineering Conference(ITOEC). Chongqing, China, IEEE, 2020: 656-661. DOI: 10.1109/ITOEC49072.2020.9141752. [11] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. 2020: arXiv: 2004.10934. http://arxiv.org/abs/2004.10934. [12] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. 2022: arXiv: 2209.02976. http://arxiv.org/abs/2209.02976. [13] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C] //2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver, BC, Canada. IEEE, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721. [14] WOO S, PARKJ, LEE J Y, et al. Cbam: Convolutional block attention module[C] //Proceedings of the European Conference on Computer Vision(ECCV), 2018:3-19. DOI: 10.1007/978-3-030-01234-2_1. [15] YU Z P, HUANG H B, CHEN W J, et al. YOLO-FaceV2: a scale and occlusion aware face detector[J]. Pattern Recognit, 2024, 155: 110714. DOI: 10.1016/j.patcog.2024.110714. [16] WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C] //2019 IEEE/CVF International Conference on Computer Vision(ICCV), Seoul, Korea(South), IEEE, 2019: 3007-3016. DOI: 10.1109/ICCV.2019.00310. [17] LU H, LIU W Z, FU H T, et al. FADE: a task-agnostic upsampling operator for encoder–decoder architectures[J]. Int J Comput Vis, 2025,133: 151-172. DOI: 10.1007/s11263-024-02191-8. [18] LU H, LIU W Z, YE Z X, et al. SAPA: similarity-aware point affiliation for feature upsampling[EB/OL]. 2022: arXiv: 2209.12866. http://arxiv.org/abs/2209.12866. [19] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C] //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, IEEE, 2018: 3974-3983. DOI: 10.1109/CVPR.2018.00418. [20] HAROON M, SHAHZAD M, FRAZ M M. Multisized object detection using spaceborne optical imagery[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13: 3032-3046. DOI: 10.1109/JSTARS.2020.3000317. [21] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C] //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, USA, IEEE, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079. [22] CHEN Y F, ZHANG C Y, CHEN B, et al. Accurate leukocyte detection based on deformable-DETR and multi-level feature fusion for aiding diagnosis of blood diseases[J]. Comput Biol Med, 2024, 170: 107917. DOI: 10.1016/j.compbiomed.2024.107917. [23] ZHAO G M, GE W F, YU Y Z. GraphFPN: graph feature pyramid network for object detection[C] //2021 IEEE/CVF International Conference on Computer Vision(ICCV), Montreal, QC, Canada, IEEE, 2021: 2743-2752. DOI: 10.1109/ICCV48922.2021.00276. [24] WANG C C, HE W, NIE Y, et al. Gold-YOLO: efficient object detector via gather-and-distribute mechanism[EB/OL]. 2023: arXiv: 2309.11331. https://doi.org/10.48550/arXiv.2309.11331. ( |