[1] DOMINGOS P. Rule induction and instance-based learning: A unified approach[C] //International Joint Conference on Artificial Intelligence,Morgan Kaufmann Publishers Inc, 1995:1226-1232. [2] LI C Q, JIANG L X, LI H W. Naive Bayes for value difference metric[J]. Front Comput Sci, 2014, 8(2):255-264. DOI: 10.1007/s11704-014-3038-5. [3] MASTELINI S M, DE LEON FERREIRA DE CARVALHO A C P. Efficient online tree, rule-based, and distance-based algorithms[C] //Anais do XXXVII Concurso de Teses e Dissertações(CTD 2024), Brasil, Sociedade Brasileira de Computação-SBC, 2024: 21-27. DOI: 10.5753/ctd.2024.1859. [4] AHA D W, KIBLER D, ALBERT M K. Instance-based learning algorithms[J]. Mach Learn, 1991, 6(1): 37-66. DOI: 10.1007/BF00153759. [5] BLANZIERI E, RICCI F. Probability based metrics for nearest neighbor classification and case-based reasoning[M] //Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, 1999: 14-28. DOI: 10.1007/3-540-48508-2_2. [6] QUANG L S, BAO H T. A conditional probability distribution-based dissimilarity measure for categorial data[C] //DAI H, SRIKANT R, ZHANG C. Pacific-Asia Conference on Knowledge Discovery and Data Mining, Berlin, Heidelberg: Springer, 2004: 580-589. DOI: 10.1007/978-3-540-24775-3_69. [7] DE SANTIS E, MASCIOLI F M F, SADEGHIAN A, et al. A dissimilarity learning approach by evolutionary computation for faults recognition in smart grids[C] //International Joint Conference on Computational Intelligence. Cham: Springer, 2016: 113-130. DOI: 10.1007/978-3-319-26393-9_8. [8] 李仁侃,叶东毅.粗糙K-Modes聚类算法[J].计算机应用, 2011, 31(1): 97-100. DOI: 10.3724/SP.J.1087.2011.00097. [9] 李超群.名词性属性距离度量问题及其应用研究[D].武汉:中国地质大学, 2012. [10] 龚芳.反转类指定距离度量的改进及应用研究[D].武汉:中国地质大学, 2021. DOI:10.27492/d.cnki.gzdzu.2021.000301 [11] ZHANG H, PETITJEAN F, BUNTINE W. Hierarchical gradient smoothing for probability estimation trees[C] //Pacific-Asia Conference on Knowledge Discovery and Data Mining, Cham: Springer, 2020: 222-234. DOI: 10.1007/978-3-030-47426-3_18. [12] QIU C, JIANG L X, LI C Q. Not always simple classification: Learning SuperParent for class probability estimation[J]. Expert Syst Appl, 2015, 42(13): 5433-5440. DOI: 10.1016/j.eswa.2015.02.049. [13] GONG F, JIANG L X, ZHANG H, et al. Gain ratio weighted inverted specific-class distance measure for nominal attributes[J]. Int J Mach Learn Cyb, 2020, 11(1): 2237-2246. DOI: 10.1007/s13042-020-01112-8. [14] RENTEA RM, ST PETER SD. Pediatric appendicitis[J]. Surg Clin North Am, 2017, 97(1): 93-112. DOI: 10.1016/j.suc.2016.08.009. [15] MARCINKEVICˇS R, REIS WOLFERTSTETTER P, KLIMIENE U, et al. Interpretable and intervenable ultrasonography-based machine learning models for pediatric appendicitis[J]. Med Image Anal, 2024, 91: 103042. DOI: 10.1016/j.media.2023.103042. [16] 吴燕妮.基于人工智能的急性阑尾炎病理类型预测模型建立[D].广州: 南方医科大学, 2022. DOI:10.27003/d.cnki.gojyu.2022.000934. ( |